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1. Introduction: In the footsteps of Apollonius

It is well-known that many processes in physics, astronomy and medicine yield
data on spherical manifolds. But there are situations where data live on other non-
Euclidean manifolds, for instance, in cosmology (an open expanding model of the
universe has the geometry of two-sheeted hyperboloid) or in optics (in catadioptric
image processing, where a sensor overlooks a hyperbolic or parabolic mirror).12,18

In this catadioptric procedure, optical data may be processed directly on the mirror,
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thus on a two-sheeted hyperboloid or a paraboloid.12 So one needs suitable analysis
tools for data living on such non-Euclidean manifolds. This suggests to adapt the
continuous wavelet transform (CWT) to this situation.

Actually, those three manifolds constitute the so-called conic sections, gener-
ated by intersecting a double cone by a plane. This was a major discovery due
to Apollonius of Perga (c. 262 BCc. 190 BC), a Greek geometer and astronomer
of the Alexandrian school (incidentally, it was Apollonius who gave the ellipse, the
parabola, and the hyperbola the names by which we know them42). Thus one should
aim at designing a unified CWT formalism for all conic sections at once.

This paper is organized as follows. First we shall review very briefly the known
construction of the continuous wavelet transform (CWT) on the two-sphere. Next
we turn to the corresponding construction on the upper sheet of two-sheeted hyper-
boloid. As will be seen, the two cases are largely parallel to each other. Then, after
a few remarks on the case of the paraboloid, we give some indications on a unified
approach to the CWT on conic sections.

2. The CWT on the two-sphere

Let us begin with the two-sphere S2. Fourier analysis on S2 is standard, but cum-
bersome, since it amounts to work with expansions in spherical harmonics. The
latter, denoted {Y ml }, constitute an orthonormal basis of L2(S2, dµ), so that any
function f ∈ L2(S2, dµ) may be expanded as

f(ω) =
∑
l∈N

∑
|m|6l

f̂(l,m)Y ml (ω), (2.1)

f̂(l,m) = 〈Y ml | f〉 =
∫
S2

dµ(ω) Y ml (ω) f(ω), (2.2)

where ω = (θ, ϕ) ∈ S2, θ ∈ [0, π] is the latitude angle, ϕ ∈ [0, 2π) is the longitude
angle, and dµ = sin θ dθ dϕ is the SO(3)-invariant measure on S2.

The problem is that, since Y ml are not localized at all on the sphere, Fourier
analysis is global, whereas experience tells us that a local analysis is highly desir-
able. Actually, there are specific combinations of spherical harmonics which are well
localized (the so-called spherical harmonics kernels31), but their use entails losing
the simplicity of an orthonormal basis.

Thus it is not surprising that alternative solutions have been proposed. Be-
sides Gabor analysis on the tangent bundle,38 one finds in the literature several
approaches related to the continuous wavelet transform and corresponding frames.
For instance, Freeden et al.15,17 combine wavelets and spherical harmonics, defin-
ing a transformation on S2 using a special dilation operator defined on the Fourier
domain. Mhaskar et al.30 introduce polynomial spherical frames where the order of
the polynomials plays the role of the dilation. The drawbacks of these methods is
that they focus on the frequential aspect of the transformations. In consequence,
the spatial localization of these wavelets is either not guaranteed or precisely con-
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trolled. On the other hand, these kernel methods lead to the rich field of spherical
approximations5,16 and prove very useful in the geosciences.

Bülow13 did succeed in getting good localization properties by using the evolu-
tion of a spherical Gaussian governed by the heat equation on S2. Then he gets a
set of wavelet filters by differentiation of this Gaussian. However, this approach is
restricted to the Gaussian function and thus it not as general as the one based on
a stereographic dilation applied to an arbitrary admissible wavelet on S2, that we
shall describe in the sequel.

We ought also to mention the work of Holschneider et al. on Poisson multipole
wavelets,14,25,26 which are presented as a substitute to spherical harmonics kernels.
The resulting frames prove indeed very efficient in geophysics, in particular for the
representation of the Earth’s magnetic and gravity fields.

Discrete wavelets on the sphere have also been designed, using an S2 multires-
olution analysis. For instance, Haar wavelets on a triangulation of S2 and refined
with the lifting scheme were introduced by Schröder and Sweldens.36 This approach
has become a common tool in computer graphics. We may also mention C1 wavelets
constructed by a factorization of the refinement matrices;39 or wavelets obtained
by radial projection from a polyhedron inscribed in the sphere, typically locally
supported spline wavelets on spherical triangulations32,34 (actually this construc-
tion extends to sphere-like surfaces, i.e., continuous deformations of a sphere33). It
is interesting to note that the authors of Refs. 14, 25 also use a radial projection
from a polyhedron contained in the sphere, namely a cube, but only for defining a
discretization of the positions on the sphere — and then they construct frames, not
orthonormal bases. References to the (vast) literature on discrete spherical wavelets
may be found in Refs. 32 and 39 for earlier work and in Ref. 29 for recent work.

However, various problems plague most of those constructions, such as an inad-
equate notion of dilation, the lack of wavelet localization, the excessive rigidity of
the wavelets obtained, the lack of directionality, etc. In this respect, the continuous
wavelet transform (CWT) has many advantages: locality is controlled by dilation,
the wavelets are easily transported around the sphere by rotations from SO(3), effi-
cient algorithms are available. Holschneider24 was the first to build a genuine spheri-
cal CWT, but his construction involves several assumptions and lacks a geometrical
feeling. In particular, it contains a parameter that has to be interpreted as a dila-
tion parameter, but whose geometrical meaning is unclear. A satisfactory solution
(including a group-theoretical derivation of all the assumptions of Holschneider24)
was obtained in a series of papers from our groups3,4,5,9 that yield a rigorous and
efficient spherical CWT. A further simplification was obtained later by invoking
conformal arguments.40 In the sequel of this section, we shall give a rapid overview
of the series of works mentioned above, following mostly Ref. 7. As a general refer-
ence on 2-D wavelets, we use our recent monograph.6 For group-theoretical notions,
we refer to standard textbooks, such as those of Barut–Ra̧czka8 or Gilmore.19
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Fig. 1. Visual meaning of the stereographic dilation on S2.

2.1. The spherical CWT: sketching the problem

As it is well-known, the design of a CWT on a given manifoldX starts by identifying
the operations one wants to perform on the finite energy signals living on X, that
is, functions in L2(X, dν), where ν is a suitable measure on X. Next one realizes
these operations by unitary operators on L2(X, dν) and one looks for a possible
group-theoretical derivation.

In the case of the two-sphere S2, the required transformations are of two types:
(i) motions, which are realized by rotations % ∈ SO(3), and (ii) dilations of some
sort by a scale factor a ∈ R∗

+. The problem is how to define properly the dilation
on the sphere S2 itself.

A possible solution is to use a (radial) stereographic dilation on S2, which is
obtained in three steps (Figure 1): (i) given a point A ∈ S2, different from the
South Pole S, project it stereographically to the point B in the plane tangent to
the sphere at the North Pole N; (ii) dilate B radially in the usual way to B’; and
(iii) project back B’ to the sphere, which yields A’. The map A 7→ A’ is the required
spherical dilation around N. In order to dilate around any other point C, just bring
it to N by a rotation % ∈ SO(3), dilate as above, and go back to C by the inverse
rotation %−1.

The operations just defined have a natural realization by unitary operators in
L2(S2, dµ):

. rotation R% : (R%f)(ω) = f(%−1ω), % ∈ SO(3), (2.3)

. dilation Da : (Daf)(ω) = λ(a, θ)1/2f(ω1/a), a ∈ R∗
+. (2.4)
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In these relations, ωa = (θa, ϕ), θa is defined by tan θa

2 = a tan θ
2 for a > 0 and

the normalization factor λ(a, θ)1/2 (called cocycle or Radon-Nikodym derivative)
is needed for compensating the noninvariance of the measure µ under dilation.
Explicitly, this factor is given by

λ(a, θ) =
4a2

[(a2 − 1) cos θ + (a2 + 1)]2
. (2.5)

As we shall see below, one may derive a CWT from these ingredients, following
the general coherent state formalism,1 as was the case for the 1-D and the 2-D plane
CWT. But one may ask also whether this transformation is unique, as in the plane
cases.

2.2. The group-theoretical method

According to the general scheme,6 a possible way of solving the problem is to use the
coherent state formalism relying on square integrable representations of a suitable
transformation group.1 Thus we start from the affine transformations on S2, which
consists of rotations and dilations. These two types of operations do not commute,
yet the only extension of SO(3) by R+

∗ is their direct product. In order to evade
this contradiction, one embeds the two factors into the Lorentz group SOo(3, 1), by
the so-called Iwasawa decomposition:19,22

SOo(3, 1) = SO(3) ·A ·N, (2.6)

where SO(3) is the maximal compact subgroup of SOo(3, 1), A ' SOo(1, 1) ' R '
R+
∗ (boosts in the z-direction) and the nilpotent factor N is here abelian and two-

dimensional, so that N ' C. This procedure is justified by the fact that the Lorentz
group SOo(3, 1) is the conformal group both for the sphere S2 and for the tangent
plane R2.

Next we have to compute the action of the Lorentz group on the sphere. The
stability subgroup of the North Pole is P = SOz(2)·A·N . Thus S2 ' SOo(3, 1)/P '
SO(3)/SO(2), so that SOo(3, 1) acts transitively on S2. Then an explicit compu-
tation with help of the Iwasawa decomposition (2.6) shows that the pure dilation
by a, realized as a Lorentz boost along the z-axis, coincides with the stereographic
dilation (2.4).

Going over to the Hilbert space, we find that the Lorentz group SOo(3, 1) has a
natural unitary irreducible representation (UIR) in L2(S2, dµ), namely,37

[U(g)f ] (ω) = λ(g, ω)1/2 f
(
g−1ω

)
, for g ∈ SOo(3, 1), f ∈ L2(S2, dµ), (2.7)

where λ(g, ω) = λ(a, θ) is the Radon-Nikodym derivative given in (2.5).
Thus the parameter space of spherical wavelets is the homogeneous space X =

SOo(3, 1)/N ' SO(3)·R+
∗ , which is not a subgroup of SOo(3, 1). In order to apply the

general formalism, we must introduce a section σ : X → SOo(3, 1) and consider the



May 8, 2007 11:20 WSPC/WS-IJWMIP conic˙sections-HASSIP4˙rev

6 J-P. Antoine, I. Bogdanova and P. Vandergheynst

reduced representation U(σ(%, a)). Choosing the natural (Iwasawa) section σ(%, a) =
% a, % ∈ SO(3), a ∈ A, we obtain

U(σ(%, a)) = U(% a) = U(%)U(a) = R%Da, (2.8)

exactly as before, in (2.3)-(2.4).
It turns out that the representation (2.8) has all the properties that are required

to generate a useful CWT. First of all, it is square integrable on the quotient
manifold X = SOo(3, 1)/N ' SO(3) ·R+

∗ . For simplicity, we shall identify these two
isomorphic manifolds.

Proposition 2.1. The UIR (2.7) is square integrable on X, that is, there exist
nonzero (admissible) vectors ψ ∈ L2(S2, dµ) such that∫ ∞

0

da

a3

∫
SO(3)

d% |〈U(σ(%, a))ψ|φ〉|2 := 〈φ|Aψφ〉 <∞, for all φ ∈ L2(S2, dµ) .

(2.9)
Here d% is the left Haar measure on SO(3).

The resolution operator (also called frame operator) Aψ is diagonal in Fourier
space (i.e., it is a Fourier multiplier):

Âψf(l,m) = Gψ(l)f̂(l,m), (2.10)

where

Gψ(l) =
8π2

2l + 1

∑
|m|6l

∫ ∞

0

da

a3
|ψ̂a(l,m)|2, for all l ∈ N, (2.11)

and ψ̂a(l,m) = 〈Y ml |ψa〉 is the Fourier coefficient of ψa = Daψ.

Next, we have an exact admissibility condition on the wavelets (this condition
was also derived by Holschneider in a somewhat ad hoc way).24

Proposition 2.2. An admissible wavelet is a function ψ ∈ L2(S2, dµ) for which
there exists a positive constant c <∞ such that

Gψ(l) 6 c, for all l ∈ N. (2.12)

Equivalently, the function ψ ∈ L2(S2, dµ) is an admissible wavelet if and only if the
resolution operator Aψ is bounded and invertible.

In addition, any admissible spherical wavelet ψ such that
∫ 2π

0
dϕ ψ(θ, ϕ) 6≡

0, in particular, any nonzero axisymmetric wavelet, generates a continuous frame
{ψa,% := R%Daψ : a > 0, % ∈ SO(3)}, i.e., the operators Aψ and A−1

ψ are both
bounded. These frames, however, are presumably nontight.

A simple example of admissible spherical wavelet is the Difference of Gaussians
spherical wavelet (SDOG), obtained by transferring to the sphere the usual plane
DOG wavelet. More precisely, for φ(θ, ϕ) = exp(− tan2( θ2 )), the SDOG wavelet is
defined as

ψ
(α)
G (θ, ϕ) = φ(θ, ϕ)− 1

α [Dαφ](θ, ϕ), for α > 0. (2.13)
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Using the previous results, we may now introduce the spherical CWT.

Definition 2.3. Given the admissible wavelet ψ, the spherical CWT of a function
f ∈ L2(S2, dµ) with respect to ψ is defined as

Wf (%, a) := 〈ψa,%|f〉 =
∫
S2
dµ(ω) [R%Daψ](ω) f(ω), % ∈ SO(3), a > 0. (2.14)

According to the general coherent state formalism, there is a reconstruc-
tion formula. For any f ∈ L2(S2, dµ) and ψ an admissible wavelet such that∫ 2π

0
dϕ ψ(θ, ϕ) 6≡ 0, one has

f(ω) =
∫ ∞

0

da

a3

∫
SO(3)

d% Wf (%, a) [A−1
ψ R%Daψ](ω). (2.15)

Note again that the condition
∫ 2π

0
dϕ ψ(θ, ϕ) 6≡ 0 is automatically satisfied for any

nonzero axisymmetric (zonal) wavelet.
Correspondingly, instead of the familiar isometry property, one gets a Plancherel

relation:

‖f‖2 =
∫ ∞

0

da

a3

∫
SO(3)

d%Wf (%, a) W̃f (%, a), (2.16)

where

W̃f (%, a) := 〈A−1
ψ R%Daψ|f〉. (2.17)

The new fact here is the occurrence of the inverse A−1
ψ of the resolution operator

in these formulas. This results from the square integrability of the representation
(2.7) over the quotient space X, instead of the group itself.

2.3. The geometrical or conformal method

The group-theoretical method discussed so far yields a CWT on the sphere, but
there is more. Indeed, there is a direct connection (unitary map) between the latter
and the plane 2-D CWT, through the inverse stereographic projection, and it is
uniquely specified by geometrical considerations. The result is twofold.40

(1) Uniqueness of the stereographic projection

Let p : S2 \ {S} → R2 be a radial diffeomorphism, i.e., a C∞ bijection, from the
2-sphere to the tangent plane at the North Pole:

p(θ, ϕ) = (r(θ), ϕ) with inverse p−1(r, ϕ) = (θ(r), ϕ).

Impose, in addition, that p be a conformal map, i.e., it preserves angles, or, equiva-
lently, the metric g′ induced by p on R2 is conformally equivalent to the Euclidean
metric g:

g′ij(r, ϕ) = eφ(r) gij(r, ϕ), i, j = 1, 2, φ(r) > 0.

Then one has uniquely r(θ) = 2 tan θ
2 , i.e., p is the stereographic projection.
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(2) Uniqueness of the stereographic dilation

Let Da be a radial dilation on the sphere S2: Da(θ, ϕ) = (θa(θ), ϕ). Assume Da

is a conformal diffeomorphism. Then one has uniquely tan θa

2 = a tan θ
2 , i.e., Da is

the stereographic dilation (2.4).

The conclusion is that the two wavelet formalisms are equivalent. Let Π :
L2(S2, dµ) → L2(R2, d2~x) be the unitary map induced by the stereographic projec-
tion:

[ΠF ](~x) =
1

1 + (r/2)2
F (p−1(~x)), F ∈ L2(S2, dµ), (2.18)

with inverse

[Π−1f ](θ, ϕ) =
2

1 + cos θ
f(p(θ, ϕ)), f ∈ L2(R2, d2~x). (2.19)

Then one obtains uniquely the spherical CWT from the plane (Euclidean) one,
simply by transferring everything from the tangent plane to the sphere by inverse
stereographic projection, the wavelets, the admissibility conditions, the direction-
ality or steerability properties.40 For instance, every admissible Euclidean wavelet
ψ ∈ L2(R2, d2~x) yields an admissible spherical wavelet Π−1ψ ∈ L2(S2, dµ). In par-
ticular, if ψ is a directional wavelet, so is Π−1ψ. An example is the spherical Morlet
wavelet shown in Ref. 5, which has all the expected properties. More generally,
any orthonormal, locally supported, wavelet basis in the plane (obtained by a mul-
tiresolution procedure) may be transferred and yields an analogous basis on the
sphere.35

2.4. Additional properties

The spherical CWT just defined has further interesting properties, which are mostly
described in our previous review paper.7

(1) Unlike the usual 2-D CWT, which is fully covariant with respect to transla-
tions, rotations and dilations, the spherical CWT is only partially covariant. It is
covariant under motions on S2: for any %o ∈ SO(3), the transform of the rotated sig-
nal f(%−1

o ω) is the function Wf (%−1
o %, a). But it is not covariant under dilations. In-

deed the wavelet transform of the dilated signal (Dao
f)(ω) = λ(ao, θ)1/2 f(ω1/ao

) is
〈U(g)ψ|f〉, with g = a−1

o %a, and the latter, while a well-defined element of SOo(3, 1),
is not of the form σ(%′, a′). This reflects the fact that the parameter space X of the
spherical CWT is not a group, but only a homogeneous space.

(2) It yields an efficient analysis tool. Academic examples confirm that the spher-
ical CWT behaves exactly as its plane counterpart, namely, it detects sharp bound-
aries on the sphere, independently of their position, even at the poles. And indeed
it is currently applied by various groups for the analysis of the Cosmic Microwave
Background radiation (CMB), in particular the question of the Gaussianity of its
fluctuations. See Ref. 7 for further details and references to the original papers.
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(3) It has a correct Euclidean limit. By this we mean that, if we construct the
transform on a sphere of radius R and then let R → ∞, the spherical CWT tends
to the usual plane 2-D CWT on the tangent plane at the North Pole. We refer to
Ref. 4 for mathematical details.

(4) Discretization of the spherical CWT leads to various types of (generalized)
frames, either half-continuous (only the scale variable is discretized) or fully discrete.
Technical details may be found in Ref. 9.

3. The CWT on the two-sheeted hyperboloid

3.1. Geometry of the hyperboloid

The two-sheeted hyperboloid H2 is the dual manifold of the sphere S2, with con-
stant negative curvature and equation x2

0 − x2
1 − x2

2 = 1. In polar coordinates,
the upper sheet H2

+ may be parameterized as x = (x0, x1, x2) = x(χ, ϕ), where
x0 = coshχ, x1 = sinhχ cosϕ, x2 = sinhχ sinϕ and χ > 0, 0 6 ϕ < 2π (Figure 2).

The motions on H2
+ are of two types: (i) rotations : x(χ, ϕ) 7→ (χ, ϕ + ϕ0);

and (ii) hyperbolic motions : x(χ, ϕ) 7→ (χ + χ0, ϕ). Together they constitute the
isometry group SOo(2, 1).

As in the case of the sphere S2, the problem is how to define dilations on H2
+.

By definition, a dilation must be a homeomorphism da : H2
+ → H2

+ such that (i)
da monotonically dilates the azimuthal distance between two points, and (ii) the
set {da, a > 0} is homomorphic to R+

∗ : dadb = dab, da−1 = d−1
a , d1 = I. The point

is that here there are many possibilities. First, by comparison with the spherical
case, it seems natural to define dilation through stereographic projection, say from
the South pole to the equatorial plane x0 = 0. As in the spherical case, one has a
“pseudo-Iwasawa” decomposition:

SOo(3, 1) = SOo(2, 1) · R ·N,

where R ' SOo(1, 1) ' {boosts in the z-direction} and N ' C. By the same tech-

x
x

x

2

1

0

H2

+

Fig. 2. The upper sheet of the two-sheeted hyperboloid.
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Fig. 3. Dilation through conic projection.

nique, one gets

tanh
χa
2

= a tanh
χ

2
.

But this solution is problematic. Indeed, since | tanhχ| 6 1, there is a critical
value χo such that all points (χo, ϕ) will be sent to infinity by a finite dilation
ao = (tanhχo/2)−1. Moreover, for a > ao, the dilation maps the upper sheet H2

+ of
the hyperboloid onto the lower sheet H2

−. Indeed, the stereographic projection maps
the upper sheet H2

+ onto the interior of the unit disk in the equatorial plane and
the lower sheet H2

− onto the exterior of the unit disk.3 Clearly this is unacceptable
for setting up a CWT. In addition, there is no obvious representation of SOo(3, 1)
in L2(H2

+).
Therefore, other solutions have been proposed in Refs. 10, 11. We mention two

of them.

(1) Dilation through conic projection:

The idea of this solution is to project the upper sheet of the hyperboloid H2
+

onto its tangent half null-cone C2
+:

C2
+ = {x = (x0, x1, x2) ∈ R3 : x2

0 − x2
1 − x2

2 = 0, x0 > 0}, with dilation x 7→ ax.

The conic projection Φ : H2
+ → C2

+ is given by

Φ(x) = 2 sinh
χ

2
eiϕ, ∀x = x(χ, ϕ) ∈ H2

+.

The corresponding dilation is given by sinh
χa
2

= a sinh
χ

2
(Figure 3) .

(2) Dilation through conic projection and “flattening”:

For this solution, one projects H2
+ onto the cone C2

+, and then vertically onto
the plane x0 = 0. The combined projection Π1Φ : H2

+ → R2 is given by

Π1Φ(x) = sinhχ eiϕ, ∀x = x(χ, ϕ) ∈ H2
+.
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The corresponding dilation is given by sinhχa = a sinhχ.
Actually, there is a one-parameter family of possible projections ΠpΦ of this

type,

ΠpΦ(x) =
1
p

sinh pχ eiϕ, x = x(χ, ϕ), (3.1)

leading to dilations sinh pχa = a sinh pχ (p > 0). Thus p = 1
2 gives the dilation by

conic projection, while p = 1 yields the dilation by conic projection and flattening.
However, the parameter p does not seem to have a geometrical meaning.

3.2. The CWT on the upper sheet of the hyperboloid

In order to setup a CWT on the hyperboloid, the idea of Refs. 10, 11 is to exploit
the existence of an appropriate integral transform on L2(H2

+), the Fourier-Helgason
transform, that defines harmonic analysis on H2, including convolution theorems.23

The Fourier-Helgason transform is an isometry FH : L2(H2
+, dµ) → L2(L, dη),

where µ is the SOo(2, 1)-invariant measure on H2
+ and L is a line-bundle over the

space Ξ = R+ ×PC+ = {(ν, ξ) : ν ∈ R+, ξ ∈ PC+}. Here PC+ denotes the projective
forward cone

PC+ = {ξ ∈ C2
+ : λξ ≡ ξ, λ > 0, ξ0 > 0},

and L2(L, dη) is the Hilbert space of square integrable sections of L, with an ap-
propriate measure dη(ν, ξ).10,11,23

Explicitly, the Fourier-Helgason (FH) transform and its inverse read, respec-
tively,

f̂(ν, ξ) := FH[f ](ν, ξ) =
∫
H2

+

f(x) (x · ξ)− 1
2+iν dµ(x), ∀ f ∈ C∞

0 (H2
+),

FH−1[g](x) =
∫

Ξ

g(ν, ξ) (x · ξ)− 1
2−iν dη(ν, ξ), ∀ g ∈ C∞

0 (L).

Then FH extends to an isometry of L2(H2
+, dµ) onto L2(L, dη). In these relations,

(x · ξ)− 1
2−iν is a hyperbolic plane wave, that is, an eigenfunction of the Laplacian

over H2
+, exactly as exp(ik · x) is a Euclidean plane wave. We note that, if f is

rotation invariant, i.e., SO(2) invariant, then its FH-transform f̂(ν, ξ) depends on
ν only.

The second ingredient for designing a CWT on the hyperboloid is given by
convolution theorems. First, given f ∈ L2(H2

+) and s ∈ L1(H2
+), their hyperbolic

convolution is the following function on SOo(2, 1):

(f ∗ s)(g) =
∫
H2

+

f(g−1x)s(x)dµ(x).

Next, one may take the restriction to H2
+, using a section [·] : H2

+ → SOo(2, 1), and
define

(f ∗ s)(y) =
∫
H2

+

f([y]−1x)s(x)dµ(x), y ∈ H2
+.
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Then the key convolution theorem reads as follows.

Proposition 3.1. Given f, s ∈ L2(H2
+) with s rotation invariant, then s ∗ f ∈

L1(H2
+) and

(̂s ∗ f)(ν, ξ) = f̂(ν, ξ) ŝ(ν).

We are now in a position to define the hyperbolic CWT, which actually looks
exactly the same as its spherical counterpart.

Definition 3.2. Given an admissible hyperbolic wavelet ψ, the hyperbolic CWT
of f ∈ L2(H2

+) is

Wf (g, a) := 〈ψa,g|f〉 =
∫
H2

+

ψa(g−1x) f(x) dµ(x), g ∈ SOo(2, 1), a > 0. (3.2)

As in the spherical case, ψa(x) = λ(a, x)ψ(d1/ax), with da an appropriate dilation,
and λ(a, x) is the corresponding Radon-Nikodym derivative.

For instance, if da is the dilation through conic projection, then λ(a, x) = a−2. Note
that, if the wavelet ψ is axisymmetric, the hyperbolic CWT is a convolution:

Wf (g, a) ≡ Wf (x, a) = (ψa ∗ f)(x), where g = [x], x ∈ H2
+. (3.3)

It remains to state an appropriate wavelet admissibility condition.

Proposition 3.3. Let ψ ∈ L1(H2
+) be axisymmetric and let α be a positive function

on R+
∗ , for which there exists constants m, M such that

0 < m 6 Aψ(ν) :=
∫ ∞

0

|ψ̂a(ν)|2 α(a)da 6 M <∞. (3.4)

Then the linear operator Aψ on L2(H2
+) defined by

Aψf(x′) =
∫
H2

+

∫ ∞

0

Wf (x, a)ψa,[x](x′)α(a) da dx, x′ ∈ H2
+,

is bounded with bounded inverse. The resolution operator Aψ is diagonal in Fourier–
Helgason space (i.e., it is Fourier–Helgason multiplier):

Âψf(ν, ϕ) = Aψ(ν)f̂(ν, ϕ).

In other words, the family {ψa,[x] : a > 0, x ∈ H2
+} is a continuous frame.

From Proposition 3.3, one obtains a reconstruction formula, which holds in the
strong sense in L2(H2

+):

f(x′) =
∫
H2

+

∫ ∞

0

Wf (x, a)A−1
ψ ψa,[x](x′)α(a) da dx.

As for the function α, its choice is arbitrary, up to admissibility. For instance, if
one chooses the dilation through conic projection and the function α(a) = a−β , β >
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a = 1, χ = 0, ϕ = 0 a = 0.5, χ = 0, ϕ = 0 a = 0.5, χ = 1, ϕ = 3π/4

a = 0.5, χ = 1, ϕ = π/2 a = 0.5, χ = 0.75, ϕ = π a = 0.5, χ = 2.75, ϕ = 3π/4

Fig. 4. The hyperbolic DOG wavelet at different scales and positions.

0, then an axisymmetric wavelet ψ ∈ L2(H2
+) is admissible either if 1 < β 6 2 and

ψ is integrable, or β > 2 and the following zero-mean condition is satisfied:∫
H2

+

ψ(x) dµ(x) = 0, x = (χ, ϕ). (3.5)

Exactly as in the spherical case, a typical hyperbolic wavelet is the hyperbolic
DOG at scale a (which is axisymmetric):

ψHDOG(χ, ϕ) =
1
a

exp
[
− 1
a2

sinh2
(χ
2
)]
− 1

4a
exp

[
− 1

4a2
sinh2

(χ
2
)]

(here one uses again the dilation via conic projection). This wavelet is presented in
Figure 4 at two scales (a = 1, a = 0.5) and various positions (χ, ϕ) on H2

+. This
allows to visualize the action of the various operators upon the wavelet (dilation,
hyperbolic translation, rotation). Note that, for better readability, the visualization
is made in the open unit disk obtained from H2

+ by stereographic projection.10

Finally we notice that the Euclidean limit also exists in the hyperbolic case.
Taking a hyperboloid H2

R of radius R, that is, of equation x2
0 − x2

1 − x2
2 = R2, and

letting R→∞, one shows that the Fourier-Helgason transform on H2
+R tends to the

usual Fourier transform in the plane, mirroring the group contraction SO(2,1) →
E(2), the 2-D Euclidean group (upon adding dilations, each of the two groups gives
the parameter space of the corresponding CWT).10 Then, taking once again the
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dilation via conic projection, so that λ(a, x) = a−2, one shows that the admissibility
condition contained in (3.4) goes into the corresponding admissibility condition of
the usual 2-D plane wavelets, namely

∫
R2 |ψ̂(~k)| |~k|−2 d2~k < ∞. As a consequence,

the necessary zero-mean admissibility condition (3.5) goes into the corresponding
zero-mean condition of the usual 2-D plane wavelets

∫
R2 ψ(~x) d2~x = 0.

4. The CWT on other conic sections

4.1. The case of the paraboloid

The (axisymmetric) paraboloid is the manifold of equation P 2 = {(x0, x1, x2) ∈ R3 :
x0 = x2

1 + x2
2}. This is a singular limit case between the sphere S2 and the two-

sheeted hyperboloid H2. The paraboloid P 2 does not have a constant curvature and
it also lacks a large isometry group, so that the general coherent state formalism
cannot be used. Therefore, designing a CWT on P 2, by a limiting procedure or
otherwise, is bound to be a difficult process.

A different approach has been suggested, however.2,27 The idea is to consider
instead of P 2 a related manifold, namely, the paraboloid with apex removed P =
P 2 \ {(0, 0, 0)}. Then one notes that the set P of 3 × 3 matrices of the form g =
diag(a2, arθ), whith a > 0, rθ ∈ SO(2), leaves both P 2 and P invariant. Next one
embeds P into the group

GP =

{
g(~b, a, θ) :=

(
a2 ~0T
~b arθ

)
: a > 0, ~b ∈ R2, 0 6 θ < 2π

}
.

This group GP is a Lie group, nonunimodular, similar to, but different from SIM(2).
It turns out that this group factorizes as GP = PH, where H acts as a shear group
on R3. Then P ' GP/H and is homeomorphic to GP. Thus P has a natural action
on P.

Furthermore, the group GP has an irreducible unitary representation U in
L2(GP, dµP), where the measure dµP is invariant under the action of P . This rep-
resentation is square integrable, so that the general coherent state formalism may
be applied, as in the spherical case. The outcome is a time-frequency transform,
which acts on P much as a CWT in ~k-space (momentum space).

However, this transform does not involve dilations, so it is not really a wavelet
transform. Then it is suggested to design first a CWT on a circular cylinder and
then transport it to P by a homeomorphism. But the resulting CWT has other
drawbacks, so that the problem remains unsolved, in our opinion. We will come
back to this case elsewhere.

4.2. The CWT on general conical sections

According to Apollonius,42 the conic sections are the sphere S2, the paraboloid P 2

and the two-sheeted hyperboloid H2. All three are obtained as sections of a double
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null-cone

C3
0 = {(x0, x1, x2, x3) ∈ R4 : x2

0 − x2
1 − x2

2 − x2
3 = 0}

by a plane x0 = 1 + tanα(x3 − 2), 0 6 α 6 π (hence the name). Thus one gets the
full family of conic sections, indexed by the parameter α:

. For α = 0, the unit sphere S2;

. For 0 < α < π/4, an ellipsoid;

. For α = π/4, the paraboloid P 2;

. For π/4 < α < π/2, a two-sheeted hyperboloid;

. For α = π/2, the two-sheeted hyperboloid H2.

As usual, the key is to define appropriate dilations. A possible technique consists in
introducing generalized projective coordinates. On the section indexed by the tilt
angle α, one puts:

ui =
1− 2 tanα
x0 − x3 tanα

xi, i = 1, 2, 3. (4.1)

For the sphere S2, corresponding to α = 0, this gives the familiar projective coor-
dinates ui = xi/x0. Then the dilation is obtained by a Lorentz boost of parameter
t ∈ R along the axes x0, x3, followed by a projection back to the section via the
projective coordinates (4.1). Applying this method to the sphere S2, one recovers
exactly the stereographic dilation tan θa

2 = a tan θ
2 , with a = et.

The technique is illustrated in Figure 5 for the case of an ellipsoidal section.
The section is represented by the ellipse, with S, N representing the South, resp.
North, pole of the sphere or the ellipsoid. Then one proceeds in two steps: (i) a
boost P → P ′; (ii) a projection back to the section by homogeneous coordinates
P ′ → Π(P ′). An alternative way consists in making first the boost P → P ′, as
above, then coming back to the section by another Lorentz boost in the plane
P ′Ox0.

However, applying the same procedure in the case of the hyperboloid H2, one
recovers in both cases the stereographic dilation, which mixes the two sheets and is
therefore unacceptable.

One may also consider an alternative way of generating sections, this one purely
group-theoretical. The idea is simply to start from the standard sections S2 or H2

and generate new sections by a boost x 7→ x′ of parameter χ along the axes x0, x2.
From S2, with equation x0 = 1, one gets in this way an ellipsoid of equation

x′21 +
(
x′0 − coshχ

sinhχ

)2

+ x′23 = x′21 +
(
x′2 − sinhχ

coshχ

)2

+ x′23 = 1.

This is indeed the equation of an ellipsoid of revolution around the x0 axis, of
eccentricity 1/ cosh2 χ in the (x1, x2) plane and 1/ sinh2 χ in the (x1, x0) plane.

From H2, with equation x3 = 1, one gets a two-sheeted hyperboloid. In this
approach, it should be noted that the paraboloid, as limit from both sides, becomes
a degenerate half-line (see Figure 6).
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S

N

x0

x1 x2

P’

(P)'

A
O

P

Fig. 5. Dilation on an ellipsoidal section via projective coordinates.

x0

x1 x2A O

x0

x1x2

A

O

x0

x1x2
A O

Fig. 6. Generation of conic sections.

In all cases, the strategy for building a CWT on an ellipsoidal section is the
following. (i) Start with the spherical section that gives S2 and consider the usual
representation U of the Lorentz group SOo(1, 3) in L2(S2); (ii) Any other smooth
section σ(S2) of the same type allows to bring the action of SOo(1, 3) to σ(S2) and
induces an isometry Vσ : L2(S2) → L2(σ(S2)); (iii) One gets a new UIR of SOo(1, 3)
in L2(σ(S2)) by Vσ ◦U ◦V −1

σ . Then the construction of wavelets on the new section
is immediate.

5. Outcome

Mathematical aestheticism shouldn’t lead us to forget that one of the key ingredients
in the success of wavelets is the very efficient algorithmic structure that sustains
them. Although developing fast algorithms is out of the scope of this paper, it
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can be enlightening to point at general arguments that lead, or may lead, to such
algorithms. In the particular case of the Continuous Wavelet Transform in Rd,
everything is rather simple: at fixed scale and rotation angle, the CWT is indeed a
convolution and can be sampled and efficiently computed using the FFT algorithm.
The same is true for the CWT on the sphere, but with an extra twist: the transform
is a correlation that, at each scale, maps functions on S2 to functions on the rotation
group SO(3). There again, fast Fourier transform algorithms have been used to
compute the CWT at reduced cost (see for example Refs. 20, 21, 41). Difficulties
increase event further in the case of the CWT on the hyperboloid. Though the
transform is once again of convolution type and diagonalized in the Fourier domain,
implementation of the associated Fourier transform (the Helgason transform) hasn’t
been fully studied despite early interest.28 Finally, as for the case of general conic
sections, everything has to be invented. Note however that the section mechanism
using the isometry Vσ above suggests performing most of the computation on S2 and
then mapping the result to the target surface. In that case, most of the algorithmic
structure is similar to the well-controlled case of the CWT on the sphere.

The general conclusion is that wavelets on conic sections are an active field of
research, that keeps finding exciting applications, essentially in astrophysics and in
optics (catadioptric image processing). Progress is also made on the mathemati-
cal side, but much work remains to be done, especially on the nonspherical cases.
Actually other non-Euclidean manifolds may also be considered, but this another
story.
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35. D. Roşca and J-P. Antoine, Locally supported orthogonal wavelet bases on the sphere

via stereographic projection, in preparation
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