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Abstract

We propose in this paper a new class of vision-based
behaviors that provide navigation with self-positioning
to an autonomous mobile robot. Self-positioning is
performed by servoed homing behaviors that use sim-
ple visual features of the environment as homing sites,
such as landmarks, wall corners or ceiling structures.
We show that self-positioning provides means for the
robot to learn the spatial structure of unknown environ-
ments, by building a map of homing sites and paths
between them. Unlike other localization methods, a
geometric reconstruction of the environment from the
sensors is not needed. Three implementations of hom-
ing behaviors as well as resulls from experimental tests
ustng a real robot are presented.

1 Introduction

One of the problems autonomous mobile robots are
confronting is knowing the robot position and orienta-
tion (or configuration) with respect to an internal de-
scription of the environment. It is often observed that
using odometric sensors is not sufficient for control-
ling the robot: additional information on the environ-
ment is necessary. This can be obtained by adopting
exteroceptive sensors that react to features of the en-
vironment, such as tactile sensors, range-finders and
vision sensors. Using stereoscopy (2 or 3 cameras)
or dynamic vision (single mobile camera) techniques,
a geometric model of the environment can be recon-
structed and matched against a predefined model (a
map) in order to estimate the robot position. This
is known as the positioning approach, which is essen-
tially robot-centric: it consists in recomstructing the
environment from the robot sensors point of view. It
is a rather complex problem that requires heavy com-
putation and for which most of the efforts while trying
to solve it generally aim at coping with the unstable
nature of both robot resources and the real world.

Reconstructing a geometric model of the environment
is not always needed. Simple tasks such as follow-

ing a wall or going to an object may be amenable
to behavior-based approaches. Behaviors may con-
trol the robot by servoing its moves to low-level vi-
sual primitives, such as points and segments extracted
from image sequences, that are related to features and
structures of the environment. However, a common
problemn of the behavior-based approach is that it is
difficult to solve typical navigation problems such as
"bring a chair to the cafeteria”, because the robot in-
teracts with the environment via reactive behaviors
that are not mapped in space [4].

Figure 1: NOMAD robot self-positioning on a corner
site using a horizontal laser line-stripping vision sensor
(which trace is visible on the corner of the wall). A
second camera is placed vertically for self-positioning
on ceiling structures.

We propose a new class of vision-based behaviors that
provide navigation with self-positioning to autonomous
mobile robots using servoing techniques. We under-



stand here self-positioning (or homing) as the action
of finding a stable state relatively to the environment
in terms of visual primitives in an image or a set of
images. Servoing can be realized by means of visual-
or position-based approaches.

Visual servoing is fully world-centric: the environ-
ment drives the robot via its sensors. Hence, no com-
plex scene reconstruction is required and the robot
moves are directly bound to the visual primitives in
the sensed image(s). Position servoing needs to esti-
mate the robot sensor position and orientation rela-
tively to an environment feature, by interpreting the
visual information of the object as captured in one or
more images. Although no true geometric reconstruc-
tion of the environment is engaged, accurate models
of the camera and the robot and strong features such
as the object distance from the camera or the object
dimension are required.

Self-positioning may have different aspects depending
on the sensor that is used for the implementation.
Docking, which is sometime used to describe the spe-
cific action of driving the robot to a power supply base,
is a special case of self-positioning. We developed sev-
eral servoed behaviors that home the robot relatively
to reflective landmarks, ceiling structures or wall cor-
ners (see Figure 1).

The ability of learning the environment structure for
an autonomous robot is critical, since manual input
of features and structures most natural for humans
may not correspond well to features and structures to
which the robot has sensory access, especially within
a behavioral context. Learning relates here to charac-
terizing new homing sites, as well as building a map of
sites in the environment and paths between them for
navigation. An advantage of using self-positioning is
the independency and modularity of the homing be-
haviors: all the details concerning a particular self-
positioning implementation are handled internally and
may be easily changed without affecting other elements
in the behavioral architecture. Furthermore, the noisy
and unstable nature of sensors does not have to be
handled directly in the learning process.

The rest of this paper is organized as follows. The
next section retraces related work in vision-based mo-
bile robotics. Section 3 presents the vision-based ar-
chitecture we developed for our mobile autonomous
robot. Section 4 details the self-positioning approach
in terms of homing sites characterization. Section 5
briefly presents a simple scheme for navigating using
learned homing sites. Examples of homing behaviors
that we developed and tested on a real robot are pre-
sented in section 6. Finally, section 7 concludes this

paper.

2 Related work

The problem of localizing and positioning the robot in
a predefined input map has been widely studied. Lo-
calization (or self-localization) consists in recognizing
the robot local environment and is usually first applied
for correctly initializing a positioning loop. Figure 2
shows a basic control model where the robot reason-
ing ability is split in three hierarchical layers with in-
creasing execution times. First, the low-level control
layer binds the robot sensors and actuators in a control
loop that is assumed continuous. Second, the mid-
level stimulus/response positioning automaton oper-
ates at fixed periods of time, due to heavy computa-
tional needs (mainly for scene reconstruction). Third,
the top-level layer needs multiple periods to anticipate
and plan possibly multiple strategies for localizing the
robot position in an input map. The robot configura-
tion information from bottom to top is always in the
form of metric data with associated uncertainty.
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Figure 2: Three basic hierarchical reasoning layers
that control the robot actions.

Positioning often use sensing techniques based on
stereoscopy [13] or dynamic vision [12, 21]. A draw-
back is that handling sequences of images (from mul-
tiple or mobile cameras) for reconstructing a model of
the environment leads to the difficult problem of sensor
fusion [7, 15]. Hence, probabilistic methods are usu-
ally applied for weighting new sensed data based on
an estimate of their reliability [28]. Other approaches
based on non-probabilistic methods propose simplified
models, such as the set membership principle, for han-
dling the same data [6, 25].

As reported in [11], the weakness of these methods is
that they do not capture the relevant physics of the
robot resources. A sensor will most of the time yield
good or even excellent measurements of environment
features, but sometime return irrelevant data. This
unstable behavior has been extremely difficult to cap-
ture in any robust model.

The self-positioning approach is appropriate for a



multi-layered hybrid architecture [3], which can also
be described by the control model shown in Figure 2.
The bottom control layer corresponds to the visu-
ally servoed homing behaviors implementing the self-
positioning concept, while navigation works on a stim-
ulus/response basis. A strategic (top-level) reasoning
layer handles short and long term goals within a given
task. Note that there is no metric, nor uncertainty
information about the robot configuration above the
bottom level.

An overview of related work in vision for mobile robots
shows that most of the efforts have been brought to 3D
or 2D geometric reconstruction, but that little work
has been dedicated to visual or position servoing for
autonomous mobile robots. Nevertheless, it seems par-
ticularly interesting to build simple behaviors based on
vision that servo robot moves in order to get real-time
interaction with the environment. An interesting work
is however presented in [8], where a study of robot
homing using combinations of model is proposed. Two
methods are discussed. The first one computes the po-
sition of the robot in an input map of the environment
to determine the direction to a target. The second
method is adaptive; it uses a predetermined homing
pattern that is aligned with a model to compute the
direction to the target (positioning is not required).

More generally, visual servoing has been mainly ap-
plied to robot manipulators and automatic vehicle
guidance. Various problems have been raised concern-
ing the modelling of camera motion relatively to signal
variations in the image [18, 19]. The importance of cor-
rectly trimming the models that describe the servoing
interaction has also been pointed out [20, 24]. Servoing
implementations are often dynamic, with acquisition
and interpretation steps run simultaneously [16, 17].
In [26], an interesting adaptive technique is used for
the control of robots constrained to two and three de-
grees of freedom, where the control algorithm has to
cope with unknown and non-linear relations in the fea-
ture to world space mapping.

3 The vision-based behavioral
architecture

The behavioral concept aims at designing simple au-
tonomous behaviors that grouped together may per-
form structured tasks in real worlds. The behavioral
approach is inspired to some extent by the animal
world. A behavior may be described as an indepen-
dent stereotyped action that is maintained by a spe-
cific perceived stimulus [22, 27).

MANO (Mobile Autonomous NOmad-200) is our im-
plementation of the behavioral approach [4, 5]. It con-
sists of a development and experimentation environ-
ment based on a mobile robot, dedicated vision hard-
ware and a number of interconnected workstations.

This environment offers features such as network-wide
development and experimentation capabilities, virtual
robot interface (allowing equivalent experimentation
on simulator or real robot) and multi-language sup-
port.

Figure 3: Layered architecture of the MANQO behav-
ioral system.

Usually, several behaviors can be activated simultane-
ously, provided they are not competing for a common
resource. The selection of one or more behavior is per-
formed according to a decision scheme dictated by a
planner. In the behavioral concept, planning acts on
the system by allowing behaviors to run or not and is
thought to handle in interaction with some model rep-
resentation of the environment in form of a map (see
Figure 3).

Vision-based behaviors are characterized by the fact
that their stimulus is a visual primitive that triggers
and maintain the behavior active as long as it exists.
The vision systems we use are described in [9, 10, 23].
Examples of vision-based behaviors we developed for
the MANO architecture are going towards a lendmark,
going along a wall, avoiding obstacle, mapping obsta-
cles, pushing chairs, homing on landmarks and homing
on corners. Of course, the planner also relies on behav-
iors based on other sensor devices such as odometers,
IR sensors and sonars.

4 Characterizing homing sites in
unknown environments

A homing site is a feature or a collection of features in
aregion of the environment that may stimulate a hom-
ing behavior. Examples of features are wall corners,
retro-reflective landmarks, doors, windows or fluores-
cent tubes. Under the action of a homing behavior,



the robot moves are directed towards a stable configu-
ration corresponding to the center of the homing site.

4.1 Homing sites in the robot configuration
space

Our robot has four degrees of freedom (the turret and
base can be steered independently): the parameters 2
and y describe the robot position on the ground plane,
# the robot base orientation and v the turret orienta-
tion. Let us consider a 4D hyper-map of the environ-
ment, for which each element s;(X), X = (z,9,0,v),
takes a Boolean value representing the stimulus state
of a homing behavior H;. More formally we have

si(X) = { 1 if H; is stimulated )

0 otherwise

The set of configuration points

Hi={X|s:(X) =1} (2

represents the region of the robot space for which the
homing behavior H; will be stimulated. We call this
region the cepture zone. The size and shape of the
envelope bounding H; partly depends on fixed param-
eters of the homing behavior (for example the sensor
field of view), but may also vary for different homing
sites. In particular, factors such as the quality and the
structure of the environment feature(s) creating the
site may modify H;.

The center of the homing site towards which the robot
moves are directed is denoted by C;. Note that C; is
not necessarily the center of mass of H;, but depends
on the constraints that are applied to the visual prim-
itives for one particular homing behavior.

Figure 4 shows an example of capture zone modelled
for a homing behavior based on a range-finder vision
sensor. The visual primitive is the corner formed by
the intersection of the two perpendicular walls and the
site center Cj corresponds to the origin of the coordi-
nate system, which lies on the bisecting line of the cor-
ner. As shown in the example, the size of the capture
zone in the robot configuration space is usually limited
by obstacles in the environment (in this case the cor-
ner site itself). The shape and size of the capture zone
may vary considerably for other homing behaviors and
vision sensors, but is always a closed surface.

Cases may arise where the visual primitives are hidden
by an obstacle for a subset of H;, resulting in one or
more holes on the capture zone surface. Besides, de-
generated cases with more than one site center C; are
possible. Such homing sites are normally discarded in
a validation process, since they may drive the robot in
unstable situations.

corner site

Figure 4: example of a capture zone in the robot con-
figuration space. For sake of simplicity, the turret ori-
entation is constrained here to 1 = 6 and the robot is
a single 0-dimensional point.

‘Normally, when the homing is finished, the robot does
not end up exactly at C;, but rather in an uncertainty
region centered on Cj, which size is much smaller than
that of the capture zone. Various approaches may be
used to model this uncertainty region [1, 6, 7]. Their
application is however outside the scope of this paper.

4.2 Site learning and validation

The robot may learn new homing sites by wandering
in an unknown environment and monitoring the hom-
ing behaviors stimuli (active/not active). When the
robot is trapped in the capture zone of a homing site
candidate, instead of moving directly towards the site
center, it follows a specific pattern of moves that are
measured locally (for example by the odometric sen-
sors) along the capture zone boundary, so that part of
the set of points H; can be estimated.

Let us denote by €; the closed surface bounding H;.
The characterization of €; in the configuration space
from a reasonably small subset of H; is not an easy
task. Instead, we consider Q}, a projection of ; on the
ground plane that is approximated by a polyhedral. In
most cases, 2} contains enough information about Q;
for validation and navigation processes.

When a new site candidate is found, the following cri-
terias are applied (P denotes the perimeter and S the
surface):

1. there is only one C;
2. smin < S(%) < Smas



P
3. Za < mas

The first and second criteria are self-explicit. The
third criteria provides a way to determine the homo-
geneity of 2} (smooth boundary). The constants sy,
Smaz and ky,.. are fixed for a given homing behavior.
If all of the criteria applies, the site candidate is vali-
dated and its characteristics are stored in a map.

5 Navigation with homing sites

For autonomous navigation, it may be desirable to
have the robot build and maintain a map of the envi-
ronment by itself. An advantage of self-positioning is
that it provides means for the robot to learn the struc-
ture of the environment by reducing its huge noisy
state space to a small amount of stable homing sites
(and paths). Navigating with self-positioning comes
down to monitoring the robot moves between homing
sites, for example by using the robot odometric sen-
sors.

An internal representation is needed, so that the se-
quence of moves and homing sites may be inverted and
retraced at any time. Several approaches have been
proposed in the literature for map representation: ge-
ometric, probabilistic (which retain some properties of
the geometric representation), occupancy grid, graph-
based or topological. Among them, the graph-based
representation usually mixes properties of some or all
of the other representations [14].

We describe the environment by a graph-map M de-
fined by

M= (V,E) 3

where V is a set of vertices describing the homing sites
and E a set of edges describing the relative geometri-
cal (or odometric) paths binding two sites (v;, v;). The
graph-map M is restricted to cycles of length greater
than two, so that it does not contain redundant paths
between two same sites. By keeping an edge path
short, navigation can take advantage of the relative
accuracy of odometric sensors on short distances (see
Figure 6). Other behaviors, such as avoiding obstacles,
may run in parallel for safe navigation while under
odometric control [3].

6 Implementation and
experimentations

We developed three homing behaviors for evaluating
the self-positioning concept on a real robot. They are
all based on different vision systems and are therefore
stimulated by different features of the environment,
which locations are not known a priori. Some features

may however be placed intentionally in the environ-
ment (for example landmarks).

6.1 Homing on corners

The sensor used by the homing on corners behavior
is a range-finder based on a laser-line stripping vision
system [9, 23]. The behavior is stimulated when a cor-
ner is recognized in the scene (see Figure 1). The site
center C. (c stands for corner) lies on the corner bi-
secting line at a distance that is inversely proportional
to the sensor depth error distribution. This parameter
is fixed in the behavior and is hence identical between
corner homing sites. Figure 5 shows a plot of data
‘measured for the projection ¥/, of the capture zone on
the ground plane. The axes Oz and Oy correspond to
the two perpendicular side walls.

Figure 5: capture zone ground projection measured for
the homing on corners (£2,) and homing on landmarks
() behaviors.

6.2 Homing on landmarks

The sensor used by the homing on landmarks behavior
is a light-projecting vision system using an omnidirec-
tional sensor (camera with fisheye lens with about 27
steradian field of view) to distinguish reflective land-
marks from the background [2, 9, 10] (see Figure 8).
Self-positioning can be performed on any two distinct
landmarks. The site center C; (I stands for landmark)
lies on a line that passes half-way between the land-
marks, perpendicular to the line supporting them. The
distance between the site center and the landmarks, as
well as the size of 0}, is proportional to the distance be-
tween the landmarks themselves. Hence, homing sites
consisting of landmarks disposed too far away from
each other may be rejected in the validation process
(according to the criterias discussed earlier).

Figure 5 shows a plot of measures of ;. The distance



between the two site landmarks, as well as the site
location, have been chosen so that 2} and . are ap-
proximately equivalent in surface and position. In this
particular case, we observe that the capture zones of
the homing on landmarks and homing on corners have
a similar shape, although they use very different vision
sensors and site features.

6.3 Homing on ceiling structures

Since typical robot workplaces are in most cases con-
strained to a flat surface, a particularly interesting
set up for a passive omnidirectional sensor is to place
it vertically so that the optical axis is perpendicular
to the ceiling. The simplicity of ceiling structures in
typical office-like environments is tempting since the
image processing complexity is greatly reduced. Fur-
thermore, the homing on ceiling siructures behavior
can take advantage of interesting symmetric proper-
ties when servoing the robot.

6.4 Implementation

Until now, classic servoing controllers [18, 19] have
been evaluated for the implementation of the hom-
ing behaviors. However, a common problem is speed:
depending on the homing behavior and required self-
positioning precision, the robot needs 10 to 120 sec-
onds to reach the site center starting at the boundary
of the capture zone. Better servo algorithms may re-
duce the time necessary for homing the robot and still
keep the behavior stable. We are currently evaluating
promising techniques based on fuzzy logic.

a——
homing site (node)

@ : homing site center

@ : uncertainty envelope (due to the odometric drift)

Figure 6: The robot is moving from site 1 to site 3
along simple odometric paths and uses self-positioning
to reset the odometric drift.

6.5 Experimental results

We ran as set of experimental tests that showed great
‘stability for the homing on corners and homing on
landmarks behaviors [2, 4]. The homing on ceiling
structures is currently being evaluated.

Figure 7 presents an abstract of robot position mea-
surements (orientation is not measured) during a test
bench for which the robot had to navigate between
three fixed homing sites (see Figure 6) using i) the
homing on landmarks behavior and odometry and ii)
only odometry. The values reported in the graph rep-
resent the distance in centimeters between the ideal
site centers (estimated from Qf, Q4 and Q%) and man-
ually measured robot positions, for the first 24 loops
(i.e. 72 measurements). The graph shows that us-
ing self-positioning reduces the incremental drift of the
odometric sensors to a maximal value of about 15 cms.
Other tests we ran showed that the homing precision
can be reduced up to 5 cms (limited by the sensor res-
olution) at the cost of a much slower homing behavior.
The orientation maximal precision is about 1 degree.
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Figure 7: drift of the robot while navigating in a

closed loop composed of three homing sites using i)
self-positioning and odometry and ii) only odometry.
Note that the fluctuation of the odometric drift is a
particularity of the synchro-drive system used on our
Nomad-200 mobile robot.

The homing on landmarks behavior has been also sup-
porting navigation for a structured task we developed
for tidying up chairs in a room [2, 3]. This task ran suc-
cessfully during demonstration sessions of about one
hour, showing good autonomy (see Figure 8). The fact
that the chairs end positions are stable and localized
in space is to our point of view a novel feature over
existing tasks based on common behavioral architec-
tures that are usually limited to stimulus/response-like
actions not mapped in the robot configuration space.



Figure 8: Behaviors such .as homing, going to a target
and ‘detect obstacle are used cooperatively for tiding
up chairs in a room. A light-projecting vision system
is used for homing the robot on landmark pairs.

7 Conclusion

We proposed and developed three new homing be-
haviors providing self-positioning capabilities to au-
tonomous mobile robots: heming on wall corners,
homing on landmarks and homing on ceiling struc-
tures. Evaluations performed on a real robot and in-
volving the two first homing behaviors showed good
stability and autonomy during various test benches
we ran. They also provide comfortable modularity
and independency features for programming complex
tasks in real environments. The third homing behavior
shows great potential and is currently being evaluated.

The homing behaviors provide means for the robot
to learn the structure of unknown environments by
reducing their huge noisy spatial state spaces to a small
amount of stable homing sites and paths. With them,
navigation is possible in terms that were conceptually
reserved so far to positioning-like approaches (using
geometric an probabilistic methods).

In the future we will extend further the self-positioning
concept in a task that tidies up and moves chairs in a
real world consisting of offices and hallways.
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