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ABSTRACT: 
 
This paper is a contribution to the recognition of arbitrary 3-D shapes from range images. Recently, a closest point matching 
algorithm was proposed that is in a position to match 3-D shapes without the need of an explicit object description in terms of 
primitives. The advantage is that the comparison works directly on the 3-D coordinates of the surface points and needs 
neither segmentation nor feature extraction. Arbitrary shapes can potentially be matched with it. 
In this paper we present a number of 3-D object recognition experiments conducted for assessing the capability of this 
approach to recognise objects measured by range images. The experiments performed with the designed methods show the 
fast convergence and reliable recognition of objects. We also address some of the key issues of this matching algorithm, 
which are the strong dependence on the initial conditions, like position of the object to be recognised, and the quadratic 
computing complexity. 
 
 

1. INTRODUCTION 
 
The work described in this paper was carried out in the context of knowledge based 3-D object recognition. We developed a 
hybrid recognition system, which combines range and intensity images to generate and verify object hypothesises (Hügli, 
1994b). The range images are acquired with a range finder working on the principle of space coding with projected stripe 
pattern and triangulation. One application of our vision system is to recognise known objects in a robot environment, which 
permits to update a virtual representation of the robots workspace (Natonek, 1995). 
 
In our system the model and test objects are represented by a set of 3-D points, called a dense 3-D map. There exist mainly 
two approaches for geometricly matching dense 3-D maps (Zhang, 1994). The first one is based on the description of the 
dense 3-D map in terms of geometric primitives. Primitives of the model and the test are organised in a graph structure and 
mapped one onto the other with a graph matching method. The second approach considers the dense 3-D map as a surface 
and tries to find a transformation between the model and the test. The primitive-based approach exploits symbolic matching 
criteria and allows important changes in orientation and positioning between model and test, usually essential in object 
recognition. Unfortunately this approach depends largely on a robust and precise detection of primitives which remains a 
problem with current known methods (Zhang, 1994) (Maître, 1994). In contrast the surface-based approach uses all available 
information and does not need data segmentation. It can be easily applied to free form objects. The techniques for this 
approach usually need a priori knowledge of the transformation between test and model to perform a successful recognition. 
This approach has been used in visual navigation (Zhang, 1994) and object modelling (Chen, 1992) where motions between 
two surfaces to match are small while the primitive-based approach has been widely applied in object recognition. 
 
Recently, an interesting technique for the registration of dense 3-D maps has been proposed (Besl, 1992). It uses a surface-
based approach and needs, as one would expect, a priori knowledge to give a rough estimate of the transformation between 
the test and model object. Closest points between the two surfaces to match are coupled and used to calculate the 
transformation, which minimises the mean square error of the distances. The test object is then moved and rotated by the 
resulting transformation. This procedure is applied several times until the error falls below a threshold or the number of 
iteration exceeds a predefined constant. Other researchers have used similar algorithms (Zhang, 1994) (Feldmar, 1994) 
(Chen, 1992) to estimate motions, register surfaces and build models. We show some experiments to investigate the 
usefulness of the closest point matching algorithm for the recognition of objects measured by range images. 
 

2. CLOSEST POINT MATCHING ALGORITHM 
 
The algorithm, we use, was proposed in (Besl, 1992). It aims to find the transformation consisting of rotation R and translation 
t between two dense 3-D maps, referred as a model X and a test P. X and P are represented by their coordinates in space. 
Here follows a short description of the algorithm. 
 
• input: Two dense 3-D maps X and P containing respectively Nx and Np 3-D points. 
• output: Transformation (R, t) between X and P found by the algorithm. 
• iteration: 
(1) Build the set Qi of closest point pairs with q = (p, x): ∀ p � Pi find x � X with ||p - x|| = min(||p - xj||), j � [1, ..., Nx ]. 
(2) Find the transformation (Ri, ti) that minimises the mean square error ei(Ri, ti)=1/Np·∑||Ri pk + ti - xk||2  

with (pk, xk) = qk, using the quaternion method (Faugeras, 1986). 
(3) Apply the transformation, Pi+1 = (Ri, ti)(Pi). 
until ei  is below a threshold τ or i is greater than a limit μ. 
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The simplicity of this algorithm makes it easy to implement. Besides, it does not require any data pre-processing or local 
feature extraction. This facts allow to handle reasonably noise effects that occur in our range finder system. The algorithm 
converges after a few iterations as showed in (Besl, 1992). Most of the computing time of the algorithm is spent in the closest 
point search part (1) whose cost is O(Np•Nx), when not using optimised searching techniques. The calculation (2) and 
application (3) of the transformation grow both linearly with Np. 
 
We will now show some experiments to demonstrate the usefulness of the closest point matching algorithm for free form 
object recognition. First, there will be a summary of experiments in the plane with puzzle pieces. Then, we will do a 
systematic investigation of the algorithm in 3-D space using a synthetic object. 
 
 

3. EXPERIMENTAL RESULTS IN 2-D SPACE 
 
We first present experiments in the 2-D space with puzzle pieces in order to better visualise the behaviour of the algorithm in 
two dimensions. The puzzle pieces are acquired with a b/w camera. After a thresholding of the image and the extraction of 
the contour we obtain a set of points describing the border of the puzzle piece. Such sets and subsets of puzzle pieces are 
fed into the closest point matching algorithm. Figure 1 shows some examples of the matching of puzzles and parts of puzzles 
placed at different positions and different orientations. The example illustrates the correct matching of a complete piece and 
of a subpart as well as an incorrect match of a subpart. We observe that the test pieces converge in few iterations towards 
the model. However, the selection of the starting position becomes crucial to a successful registration. 
 

model
test

 
Fig. 1: Matching iterations of puzzle pieces 

 
To get a global view of the influence of translation and rotation we place successively the test piece in several different 
positions around the original puzzle. Moreover the so placed test piece will be rotated around its center of mass. Figure 2 
plots the results for all rotations and sixteen positions arranged in a grid. The black sectors at every grid position indicate the 
angles for which the matching has been successful. 
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Fig. 2: Convergence zone for a puzzle piece placed and rotated differently 

 
We observe that the translation between two pieces to be superposed is of minor influence to the convergence. However, if 
the rotation angle between the test and the model piece exceeds a certain value the registration fails. The convergence zone 
for the rotation angle is about between +/- 30 degrees. 
 
Since the computing time of the closest point matching algorithm grows with O(Nx•Np), we are interested in using as few 
points as possible. Experiments with subsampled data confirmed that good convergence is available for reduction factors up 
to eight, which allows to represent a puzzle border by only 60 points (Hügli, 1994a). 
 
In object recognition it is important to know if the final distance between two different objects is significantly larger than 
between two representations of the same object. This fact must be satisfied to allow reliable decision. Experiments with 
puzzle pieces of different shapes showed that a threshold can be set for the final distance to separate reliably the object 
classes (Hügli, 1994a). 
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4. EXPERIMENTAL RESULTS IN 3-D SPACE 
 
Encouraged by the promising first results, which are fast convergence, easy application to free form objects and relatively 
large zone of convergence, we now consider objects in 3-D space. We use a synthetic object to easily control all parameters 
like object size, point density and symmetry. A corner represented by a set of points forming its three sides is our choice. We 
now test how a copy of the corner object placed and oriented differently in space can be matched with its original. The 
number of iterations is fixed at ten, if not indicated otherwise. Figure 3 shows the model together with the test to be positioned 
at all 27 locations of the grid. Each position has a number which is referenced in the result plots. The error that corresponds 
to the mean square distance between test and model points will be indicated in square units. 
 

z

x

modeltest

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18
19

20

21

22

23

24

25

26

27

y

 
Fig. 3: Distribution of the starting positions 

 
Translation. The influence of translation and rotation on the matching shall be observed seperately. In a first experiment we 
keep the orientation unchanged and investigate how the convergence depends on the starting position. Figure 4 shows the 
final error of the matching for every starting point. A threshold, which is set at an error of one square unit, separates good and 
bad recognition cases (dashed line in figure 4). The black squares in figure 4 indicate the positions for which the matching 
failed. We see that the closest point matching algorithm can match the duplicate and the original for most of the starting 
positions. If we further investigate the positions for which the matching failed, we notice that the algorithm introduced a bad 
rotation at the first iteration step. This fact relies on the instable situation when many points in the test are coupled with only a 
few points in the model. 
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Fig. 4: Results for translated corners 

 
Convergence. An iterative algorithm is only useful if it converges quickly. This criterion will be checked by observing the 
development of the error during the iteration. Figure 5 shows the measured matching error at successive iteration steps. 
Again the test objects are only translated. The errors are thresholded by appropriate limits at the iteration steps two, five and 
ten. At each step the result of the decision is the same and showed in the right half of figure 5. We observe that already after 
few iterations the successful cases with a minimum error can be extracted. This helps one to decide at an early stage of the 
iteration if a matching will be successful or not. Computing time can be saved because one does not really need an exact 
matching to find the interesting cases at the beginning of the object recognition procedure. 
 



IAPRS, Vol. 30, Part 5W1, ISPRS Intercommission Workshop “From Pixels to Sequences”, Zurich, March 22-24 1995 

4 7 10 13 16 19 22 25
position0

1
2
3
4
5
6
7
8

100

200

300

400

500

x

y
z

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

25 26 27

0

2

5

10

iterationerror

success

failure

 
Fig. 5: Convergence of the closest point matching algorithm 

 
Subsampling. Searching the closest point is the most time consuming part of the algorithm and grows with O(Np•Nx). For a 
better performance we are thus interested in reducing the number of points representing the objects. In this experiment the 
number of points building the corners faces are subsampled uniformly to see if the matching still succeeds. As before we 
allow only translations. Figure 6 shows the results where, first, the number of points of the test has been reduced by two and, 
secondly, also the number of points of the model. 
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Fig. 6: Matching with objects subsampled in space 

 
A reduction by a factor of two of the test has no influence on the result. If both the test and the model are subsampled in 
space the performance degrades. This fact will allow us to work with a test at a relatively poor resolution, which again will 
enhance speed in the recognition process. 
 
Geometry. The next experiments investigate the influence of object geometry on the matching. We repeat the first 
experiment with an asymmetric corner. The corner faces have edge lengths with a ratio x:y:z of 10:7:5. The left drawing in 
figure 7 shows the positions for which the matching is successful. These positions differ from the symmetric corner (figure 4) 
and there are slightly more failures. 
 
The results of the matching of puzzle subparts showed that convergence depends largely on the starting position. To see if 
the same problem occurs in space we compare a small corner to a larger one. The subpart matching works only for a few 
initial conditions (see right drawing in figure 7). These cases have an interesting characteristic. All successful starting points 
are located near to the symmetric axe of the model corner. 
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Fig. 7: Results for a asymmetric corner and a subpart of a corner 
 
Rotation. We analyse now the effect of rotation. The test will thus be rotated around the z-axis. Because we know the 
matching to be influenced by principal moments (Besl, 1992), the same experiment is also performed with an asymmetric 
corner. The final error for a symmetric and an asymmetric corner object is plotted in figure 8. 
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Fig. 8: Matching results for rotated corners 

 
The plot reveals a zone of convergence (final error below one) that is about +/- 40 degrees for the symmetric corner and 
slightly larger for the asymmetric one. Comparing these results with the ones obtained for the translated corners we see that 
the rotation angle is the major constraint for the closest point matching algorithm. 
 
 

5. CONCLUSIONS 
 
We presented a number of recognition experiments conducted in order to assess the capability of the closest point matching 
algorithm to recognise objects measured by range images. 
 
The presented results show that the translation between test and model is of minor influence to the success. On the contrary, 
the rotation limits the convergence to a zone of about 80 degrees. Asymmetric objects show a slightly better performance, 
whereas subparts can only be matched for some starting points. 
 
The limited performance of subpart matching will be important for designing recognition system, where the closest point 
matching algorithm is used to recognise an object measured from a single point of view. To overcome the large dependence 
of the convergence on the starting points, one has to place the test object at different positions and orientations. The distance 
between these heuristic positions should be smaller than the convergence zone of the algorithm. 
 
At a first glance the necessity of multiple starting points seems to introduce much overhead. But since the convergence zone 
is relatively large, the number of starting points is quite low. Furthermore the algorithm converges quickly and allows 
subsampling of the point set representing the objects, which significantly reduces the computing time. These facts lead to a 
feasible method for the recognition of arbitrary shapes. 
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