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ABSTRACT

Computational visual attention (VA) has been widely inves-
tigated during the last three decades but the conventional al-
gorithms are not suitable for omnidirectional images which
often contain a significant amount of radial distortion. Only
recently a computational approach was proposed that pro-
cesses images in the spherical (non-Euclidian) space and pro-
duces attention maps with a direction independent homoge-
neous response. This paper investigates how this spherical
approach applies to real scenes and particularly to different
omnidirectional visual sensors. Reported experiments refer
to omnidirectional images obtained from a multi-camera om-
nidirectional sensor as well as a parabolic and a hyperbolic
catadioptric image sensor.

1. INTRODUCTION

1.1 Visual Attention

The human visual system makes an extensive use of the VA
in order to select relevant visual information and speed up
the vision process. The saliency-based computer model of
VA has been widely investigated in the last three decades
[8, 9, 4]. Nowadays, various such models exist as well as
numerous soft- and hardware implementations [6, 10]. It is
applied in color image segmentation [11], robot guidance [5],
object recognition [12]. Unfortunately, in all these applica-
tions, the VA is computed in the Euclidean geometry and
thus is restricted only to conventional images. One approach
to VA in omnidirectional scenes is reported in [5] but the
approach used, namely the panoramic representation, is still
subject to radial distortions.

A natural choice of a non-distorted domain for the spher-
ical field of view is the sphere S2 ∈ R3. Relaying on spher-
ical geometry, in [3] the authors proposed an algorithm that
produces attention maps with a direction independent homo-
geneous response. In this paper, we investigate how this new
spherical approach apples to real scenes and particularly to
different omnidirectional visual sensors. Reported experi-
ments refer to omnidirectional images obtained from a milti-
camera omnidirectional sensor as well as a parabolic and hy-
perbolic catadioptric image sensor.

1.2 Omnidirectional vision

Any real scene can be described by the ideal plenoptic func-
tion. This function is associated to the light field through any
point in space, at any time, and over any range of wavelength
[1]. Let an observer stand at any point in the space (x,y,z),
from which one selects any of the viewable rays by choosing
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an azimuth and elevation angle (θpl,ϕpl), as well as a band
of wavelength λ which one wishes to consider. In addition,
if this is a dynamic scene, one can choose the time t, at which
the light field to be evaluated. This results in the following
form of the plenoptic function: p = P(θpl,ϕpl,λ ,x,y,z,t).
One can easily measure any of the variables but an important
case is where ~p = (x,y,z) is fixed and one records I~p(θ ,ϕ)
that is the light incoming on a perfect punctual observer lo-
cated at ~p, i.e. the full sphere of view. Measuring I~p(θ ,ϕ)
is equivalent to observing the scene in any direction (θ ,ϕ)
from a fixed viewpoint ~p. This is achieved by catadioptric
imaging sensors and the images obtained are omnidirectional
images.

A catadioptric sensor is a combination of a curved mir-
ror and a conventional camera [2]. The fixed 3-D point at
which the catadioptric sensor samples the plenoptic function
is known as effective viewpoint. It is highly desirable that
such an imaging sensor has a single effective viewpoint, i.e.
center of projection. Such are the central catadioptric sen-
sors and particular examples are those designed with hyper-
bolic or parabolic mirror. Two omnidirectional images are
shown on Figures 1(a), and (d). Eventhough, both are om-
nidirectional, they are governed by different (non-Euclidean)
geometry inherited from the corresponding mirror they are
obtained with: hyperbolic and parabolic, respectively.

Another way of obtaining omnidirectional image is us-
ing a multi-camera system [13] (five cameras are configured
in a horizontal ring and one is pointing vertically) which col-
lects images of approximately 75% of the full sphere. The
cameras are packed tightly together such that the distance
between adjacent cameras is kept minimal. The images from
all the cameras in the system are stitched together, resulting
to an approximative omnidirectional image.

This article is organized as follows. In Section 2 we de-
rive how to map a hyperbolic and parabolic omnidirectional
images onto the sphere. Then, in Section 3 we define the
visual attention model in spherical geometry and the result-
ing spots of attention. The experimental results for three
different types of omnidirectional images (hyperbolic [15],
parabolic [14] and one approximation acquired with a multi-
camera system[13]) are presented in Section 4. Finally, we
conclude and expose some directions for future investiga-
tions.

2. MAPPING OMNIDIRECTIONAL IMAGES ONTO
THE SPHERE

It was shown in [7] that there is an equivalence between
any central catadioptric projection and a composite mapping
through the sphere. This mapping is a composition of central
projection to the unit sphere followed by the projection from



Figure 1: Hyperbolic and parabolic omnidirectional images and their mapping on the sphere.

a point on the some axis of the sphere at distance l from the
sphere’s center to a plane perpendicular to the axis at distance
m bellow the center. The position of this point of projection
depends on the mirror’s shape.

2.1 Hyperbolic projection

According to [7], the hyperbolic projection is equivalent to
the composition of normalization to the unit sphere followed
by a projection from point L, as illustrated on Figure 1(b).
Consequently, the mapping of a hyperbolic image onto the
sphere is a projection defined in spherical coordinates

shyp ≡
(l + m)sinθ

l− cosθ
(sinϕ ,cosϕ), (1)

where θ ∈ [0,π ] and ϕ ∈ [0,2π). In other words, a point on
the sphere Q is transformed into a point on the catadioptric
sensor plane P′ using Equation (1). The projection parame-
ters l and m depend on the mirror and are obtained as:

l =
2ε

l + ε2
, m =

2ε(b−1)

l + ε2
, (2)

where the eccentricity ε of the hyperbolic mirror, with semi-

axis a and b, is ε =

√
a2+b2

a
. The points lying above the pro-

jection point L are those that would be reflected by the lower
sheet of the two-sheeted hyperboloid. Actually, the lower
sheet is not used in the design of the hyperbolic catadioptric
sensor because this is where the camera is placed. On Figure
1(c) is shown the omnidirectional hyperbolic image mapped
on the sphere.

2.2 Parabolic projection

The parabolic projection is equivalent to the composition of
normalization to the unit sphere followed by stereographic

projection as depicted on Figure 1(e). In spherical coordi-
nates this reads:

spar ≡ 2cot
θ

2
(sinϕ ,cosϕ), (3)

where θ ∈ [0,π ], ϕ ∈ [0,2π). Using this projection we
can easily map any omnidirectional image obtained with
parabolic catadioptric sensor onto the sphere. One particu-
lar example is shown on Figure 1(f).

3. VISUAL ATTENTION IN SPHERICAL
GEOMETRY

Inspired by the classical VA model operating on Euclidean
(conventional) images, the computational VA model defined
in [3] operates in spherical geometry and is thus suitable for
omnidirectional images that can be mapped on the sphere. In
a first step, it consists of extracting seven specific features j
from a spherical image, one intensity, two chromatic (yellow-
blue and red-green color opponency) and , for instance, four
orientation features (00,450,900and1350). In a second step,
each feature is transformed into its conspicuity map using
center-surround mechanism operating in spherical geometry,
which highlights the parts of the scene that strongly differ
(according to a specific feature) from their surroundings. In a
third step, the conspicuity maps of the same nature are fused
into three conspicuity cues namely intensity, chromatic and
orientation cues. Finally, the conspicuity cues are fused in a
competitive way into the spherical saliency map which high-
light the most informative parts of the scene.

We briefly remind here the computation of the spherical
conspicuity feature map. It is based on the center-surround
mechanism computed from the Spherical Gaussian Pyramid
(SGP). Let us start with a spherical image feature defined
with the function f (θ ,ϕ) ∈ L2(S2), θ ∈ [0,π ],ϕ ∈ [0,2π).
Its discrete version is defined on an equi-angular grid of size



2n×2n. For building the SGP, we use an axisymmetric spher-
ical filter

ĝσk
(l) = e−(σkl)2

, (4)

where the bandwidth parameter σk is chosen so that
|ĝσk

(l)| ≪ 1. The filtering is performed in the fourier domain
and in the sense of spherical harmonics:

ĝσk
⋆ f (l,m) =

√

4π

2l + 1
ĝσk

(l,0) f̂ (l,m). (5)

The next level, fk+1, in the SGP is obtained by simply down-
sampling the filtered signal, gσk

⋆ f , by a factor of 2. In this
way, iteratively are obtained all the levels fk,k = 1 · · ·n in
SGP. We compute p ≡ (n− 3) intermediate spherical con-
spicuity maps Mp(θ ,ϕ) as follows:

M1(θ ,ϕ) = | f1(θ ,ϕ)⊖ f4(θ ,ϕ)|,
M2(θ ,ϕ) = | f2(θ ,ϕ)⊖ f5(θ ,ϕ)|,

· · · ,

Mn−3(θ ,ϕ) = | fn−3(θ ,ϕ)⊖ fn(θ ,ϕ)|,

where ⊖ refers to a cross-scale difference operator that inter-
polates the coarser scale to the finer one and then performs a
point-by-point subtraction. The corresponding feature spher-
ical conspicuity map is obtained by combining the set of all
multiscale maps Mp(θ ,ϕ):

C j(θ ,ϕ) =
n−3

∑
p=1

N (Mp(θ ,ϕ)), (6)

where N (.) refers to the non-linear spherical normaliza-
tion function used in the map integration process, simulating
intra-map and inter-map competition.

In order to obtain the spherical saliency map SS2(θ ,ϕ),
we compute the conspicuity maps for the seven different fea-
tures, then combine the features of the same nature into three
conspicuity cues (namely: intensity, chromatic and orienta-
tion) according to the following equations:

Cint(θ ,ϕ) = C1, Cchrom(θ ,ϕ) = ∑
jε{2,3}

N (C j), (7)

Corient (θ ,ϕ) = ∑
jε{4,5,6,7}

N (C j) (8)

and finally all the cues are combined using the same normal-
ization function N (.) into the saliency map:

SS2(θ ,ϕ) = ∑
cues

N (Ccue(θ ,ϕ)), (9)

Based on the spherical saliency map, we can determine
the spots of attention using a ”winner-take-all” mechanism
[8] which detects successively the most salient spots by iter-
atively applying maximum detection followed by local inhi-
bition at the maximun location.

4. EXPERIMENTAL RESULTS

In this section, we first compare the results of our approach
described in Section 3 with the Euclidean approach. Further-
more, we apply it on hyperbolic and parabolic omnidirec-
tional images after they have been mapped on the sphere.

We work with omnidirectional images defined on a spher-
ical grid of size 1024 by 1024. This permits to build n = 8
level SGP, and consequently p = 5 intermediate levels for
computing the conspicuity map. In all of the following ex-
amples, we use three features j: intensity, blue-yellow and
red-green, resulting into two cues, i.e. intensity and chro-
matic cues.

4.1 Euclidean vs. Spherical VA

We start with an image obtained by a multicamera [13] with
a field of view of θ ∈ [0,3π/4],ϕ ∈ [0,2π). The camera
is fixed in the center of the ceiling of a meeting room and
points down the table where a red object is placed. The orig-
inal image in its unwrapped version is shown on Figure 2(b).
On Figure 2(a) is shown the same image but on the sphere,
where the red object is on the South pole. The saliency map
calculated using the spherical approach is illustrated in Fig-
ure 2(d) and 2(e), respectively on the sphere and unwrapped.
The saliency map obtained by applying the Euclidean visual
attention is shown in Figure 2(f). On Figure 2 (g), (h), (i)
are shown the spots of attention, where each of the spots
is represented with a circle and a number corresponding to
the ranking of saliency. The red object, which is expected
to correspond to the most salient spot of the scene, is de-
tected accurately only in the spherical geometry (detected as
first spot) (Figure 2 (g), (h)), while this is not the case if the
Euclidean visual attention were applied (Figure 2 (i)). This
situation clearly illustrates the inconvenience of performing
Euclidean visual attention on omnidirectional images. Ac-
tually, any salient object located in the areas of the sphere’s
poles can not be precisely detected by the Euclidean visual
attention. Eventhough, salient objects located at the equator,
are detected in both cases.

4.2 VA in parabolic omnidirectional images

The parabolic omidirectional images [14] cover θ ∈
[400,1400]. We use the image from Figure 1(d). The spots
of attention are determined as described in Section 3 and the
results are shown on Figure 3. For purpose of visualization
only, we show the unwrapped version of the spherical image
(Figure 3(d)). The corresponding saliency map (Figure 3(e))
is computed using Equation 9 as once again only the intensity
and chromatic cues are considered. The five detected spots
of attention are shown with their corresponding ranking on
Figure 3(f) .

4.3 VA in hyperbolic omnidirectional images

The hyperbolic image (Figure 1(a)) is obtained through a hy-
perbolic mirror [15]. It covers θ ∈ [0,1060] from the visual
sphere. The results of application of VA algorithm after it
has been mapped on the sphere (Equation 1) are depicted on
Figure 3 at the top. The unwrapped saliency map is shown
in Figure 3(b) and the corresponding spots of attention as de-
fined in Figure 3(c).

5. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the new spherical approach for
computing the VA of real omnidirectional images and apply
it to omnidirectional images obtained from various sensors.
Three types of sensors were considered, namely a multi-
camera omnidirectional sensor, and two catadioptric sensors



Figure 2: Comparison of saliency maps computed in Euclidean and spherical geometries: the most salient object in the scene
is detected only by the spherical VA.



Figure 3: Visual attention in spherical geometry applied to parabolic and hyperbolic images.

with parabolic and hyperbolic mirrors. After a review of
the spherical computing approach, the paper provided the re-
quired transformation for mapping the different sensor im-
ages onto the sphere for further processing. Then we pre-
sented a series of experimental results. Multi-camera om-
nidirectional images were used to test the capability of the
new approach to improve spot detection in comparison to the
conventional approach. The comparison illustrates the capa-
bility of the spherical approach to provide saliency maps with
homogeneous response on the sphere and therefore shows its
advantages for detecting spots of attention in omnidirectional
scenes. Finally, the experiments with the catadioptric sensors
demonstrate the feasibility of the approach for these types of
simpler and cheaper sensors which are expected to be used
in many future applications.
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the sphere [submitted]” Nov. 2007.
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