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ABSTRACT 
This paper describes in detail the inexact matching algorithm which has been applied 
with success to 3-D object representations in a 3-D object recognition system for range 
data. The algorithm combines in a promising way several approaches proposed in the 
last couple of years: an extension of the search strategy to cope with inexact matching 
of attributed sub-graphs, the determination of a measure for attributal and structural 
dissimilarities, and the global transformation fitting, features which are used to perform 
efficient search-tree pruning. The algorithm was tested successfully in a series of 
experiments involving scenes with single and multiple objects. 

1. Introduction 

Object recognition is a key problem in machine vision. A central point of the 
recognition process is the match between model and observation at a given level of 
representation. We consider a system for the recognition of polyhedral objects that uses  
attributed relational graphs to represent the object. Since the object representations can 
be partial, inexact and even erroneous, the object recognition problem becomes an 
inexact (sub-)graph matching problem. 

The complete recognition system that encompasses the various stages from data 
acquisition over object recognition to the verification of the resulting hypothesesis, has 
been described elsewhere1,2,3. This paper treats with more detail the algorithm for the 
efficient inexact matching of attributed relational graphs using a constrained search. 

In the following, first we give a short overview over related work (§2). Next, we 
describe briefly the data acquisition system, preprocessing, matching and representation  
we apply to the acquired data matching (§3). 

The inexact matching algorithm is presented in paragraph 4. First, we introduce the 
matching problem. Then, we present the graph matching as a search problem and 
propose to solve it by a constrained-based search strategy. We discuss the cost function 
which guides the search and the constrains used in order to keep the algorithm within 
reasonable limits of complexity. Paragraph 5 shows experimental results obtained with 
the  described algorithm, paragraph 6 the conclusions and an outview on further 
subjects of interest. 

2. Related work 

The presented work is based on ideas gathered from many sources, the most 
important being presented in the following. For the graph matching approach, Eshra 
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and Fu's backtrack-based inexact matching scheme using small subgraphs called Basic 
Attributed Relational Graphs (BARGs) has been a valuable base4,5. Shapiro presented a 
very helpful paper on the use of metrics for the determination of dissimilarities and 
their combination into a global cost measure15. Oshima and Shirai13 showed the 
interesting feature of "root matches" that enables determination of interesting starting 
points in the search space. Furthermore, they proposed to introduce reliability 
measurements for graph attributes. Finally, the important concept of object rigidity - 
discussed in paragraph 4 - as well as the related mathematical tools that showed useful 
for its convenient implementation as a global search tree heuristic, are due to Faugeras 
and Hebert8. 

Recently, Flynn16 and Fan6 published on 3D object recognition approaches very 
similar to the one of the present paper, Grimson18 with a larger view. While the main 
ideas of Flynn and Fan are almost identical, some differences can be found in the 
correspondence search strategy and in the determination of the "cost" criteria. Flynn 
focuses in particular on the order of application of the tree pruning criterion, Fan uses a 
two-stage depth-first tree search, extracting promising base-matches which then are 
extended further. Through their completeness, Grimson18 and Fan6 can serve as 
valuable references for the domain of 3D Object recognition, the former for a general 
approach, for the later in particular for approaches based on surface descriptions. 

3. Data acquisition, data representation and preprocessing 

For the present work, we decided to limit us to polyhedral objects that can be 
represented using planar surface patches. The corresponding high-level representation 
is an attributed relational graph called Planar Face Representation Graph PFRG where 
each node stands for a surface (attributes "surface area" and "orientation of the surface 
normal") and each arc for a border between two adjacent surfaces (attribute "border 
length"). 
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Figure 1: i) scanned test object pyramid and ii) corresponding Planar Face Representation Graph 

PFRG 
By nature, acquired scene data will be neither complete (occlusions, …) nor precise 

(limited resolution, …) and the range image segmentation process can result in a 
cluttered PFRG representation. To deal with this kind of data, some useful intermediate 
level processing is helpful in order to remove elements which do not contain useful 
information and to merge elements which have been separated accidentally2. But also 
the subsequent matching algorithm must be conceived such that it is able to handle 
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inexact information of this kind. 
An important step preceding the correspondence search is the acquisition and 

preprocessing of raw input data. For our experiences, we used a laser range finder14 

delivering a dense set of points in the space. A subsequent range image segmentation 
process3,11,12 delivers a more compact representation at a higher level of abstraction, 
i.e. in the form of regions and borders. 

4. Algorithm for the inexact match of subgraphs 

In the present paragraph, we treat inexact high level matching. First, we introduce 
the basic notations and define the problem. Then, we present the graph matching as a 
tree search problem, discuss the expansion rule of the search and the corresponding 
pruning constraints. Finally, we introduce the cost function which reflects the 
dissimilarity of the matched PFRGs. 

Table 1: Notations 

NRm node m of reference graph R 
NSn node n of scene graph S 
A(NSm, NSn) non-directed arc NSm, NSn 
A(NRm,NRn) non-directed arc NRm, NRn 
GS = (NS, AS) scene graph (PFRG) 
GR= (NS, AS) reference graph (PFRG) 
NS = {,NSn,} set of scene nodes 

NR = {,NRm,} set of reference nodes 
AS = {,A(NSm, NSn), } set of scene arcs 
AR ={ , A(NRm, NRn), } set of reference arcs 
Mi = { , (NSn, NRm), } set of matched nodes 
Hi = (Mi, Ci, Ti) hypothesis on a match Mi 
Ci cost for match Mi 
Ti transformation for match Mi 

Problem definition 
Given two PFRGs, one for the scene GS and one for the candidate reference GR, find 

an ordered set of matching hypothesis {Hi} describing partial matches between the two 
graphs. A matching hypothesis is a triple composed of the set of matched nodes 
Mi = {…, (NSn,NRm), …}, the matching cost Ci and the geometrical transformation Ti 
the reference object has to undergo so that it maps the scene data the best (figure 2). 
The ordering is according to the cost Ci. 

transformation 
Ti

hypothesis Hi 
cost Ci

 
Figure 2: the matching process 

A state space lattice for the search of hypotheses 
The correspondence search can be seen as a search in a state space lattice: each state 

Si corresponds to a match Mi and each extension of Si to a new son state Si+1 to the 
extension of Mi to Mi+1. The new match extends the previous by the addition of a new 
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node-to-node correspondence: Mi = Mi-1 ≈ (NSn, NRm). 
As a new node of the scene is used at each state transition, the search space can be 

divided in hierarchical levels. Level 0 has the states with no match, level 1 has the 
states with one node-match and level i has the all states with i node-matches. As a full 
expansion of the search would lead to an unreasonable computational complexity, we 
apply a constrained search with following features: 
• "Best-first" search: at each step of the search, the partial hypothesis {Hi} are ordered 

according to their cost. The hypothesis with the minimal cost is expanded first to its 
son states. 

• Pruning: not all expansions of a given state lead to valid hypothesis. If we reject a 
hypothesis, we also reject its further expansions. This is the essence of pruning. 

• Expansion of a state is performed according to the graph structure of GS and GR; each 
hypothesis is expanded by a new node-match which brings together two not yet 
matched nodes and preserves the connectivity of GS and GR. 

• Termination: heuristics are of various types and can be selected according to the 
application. Typical termination conditions are i) termination on found solution 
(solution is good enough), ii) termination on time or memory limits (best solutions so 
far). 

Connectivity constraint 
The state expansion is governed by the connectivity of both GS and GR. To 

formalize this statement, we consider figure 3 and define core sets CSi and CRj, as the 
sets which contain the nodes already matched, for the scene as well as for the reference. 
The node candidates for further matches must satisfy two conditions. First, they are yet 
unmatched. Secondly, two of them form a candidate node-match if and only if they are 
respectively connected to core nodes which form a node-match. In other words,  a 
node-match of core elements (NSm,NRn) expands to all possible node-matches (NSi,NRj) 
such that both NSi and NRj are yet unmatched and respectively connected NSm and NRn. 

(NTRm,NTSn)TRi

CRi

TSi

CSi
Mi

 
Figure 3 connectivity criterion (white: set of core nodes, dotted: candidate nodes) for further matches 

Rigidity & visibility constraints 
For pruning, Hebert and Faugeras7 propose to use an interesting feature: the rigidity 

of objects. Given a certain number of matches between elements of the scene and the 
reference, one can find a hypothesis on the transformation Ti which maps the reference 
object to the scene. 

In our case, as the PFRG carries no information on the surface position, we consider 
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the transformation to be a pure rotation Ri. In principle, the rotation transforms the 
vector normal to the surface of node NRm to the one of NSn for each node-match 
(NRm,NSn). 

scene terminal 
normal

scene core 
normals

reference terminal 
normal

Ω
a

reference core 
normals

match Mi

Rot i

prediction for 
match Mi+1

observation vector 
scene space

ε Ω

gaussian sphere 
reference space

OV
Rot -1

S i

Figure 4: rigidity  condition Figure 5: observation space 
The criterion to accept further matches is that they can be done using a very similar 

rotation Ri' (identity can not be requested due to the non-idealities of the data 
acquisition process). 

|< ) (normal(NTSm), normal( Ri ( NTRn ) ) )| ≤ THΩ  (1) 
Furthermore, the increase in the "rotation fitting" error due to the extension of match 

Mk-1 to Mk must be bellow a given threshold: 
Δerotfit(Si-1, Si)  ≤  THrotfit  (2) 

Note that for an empty match, the rotation Ri is not determined, for a match of a 
single node-match, it becomes underdetermined and for two and more node-matches 
generally overdetermined: the rotation Ri must be determined using a "best-fit" method 
(here least squared error fitting). Since R has to be recomputed after each successful 
extension of a partial match to a bigger one, its computation must be considered with 
the necessary attention. A very elegant approach enabling the computation of the 
transformations Ti in an non-iterative way while taking into account planes, lines and 
points has been shown in reference 8. The idea is based on the use of quaternions10 and 
permits to determine in an extremely elegant way least square error fitted 
transformations taking even weighting factors into account. The idea has been 
developed in detail in two references1,7. 

The visibility condition can also be used. The observation of the scene space is 
usually mono-ocular and can be represented by an observation vector. The 
transformation of this vector back to the reference space enables to restrict the set of 
matchable planar faces of the reference object: their orientations must not be more then 
90°±ε different from the transformed observation vector. 

Attribute dissimilarity based constraints 
Despite the fact that they are less reliable due to possible occlusions and shadowing, 

the attributes "surface area" (nodes) and "border length" (arcs) are also used for pruning 
in the two following ways. 

A first constraint limits the increase of the respective cumulative dissimilarities for 
the transition from Si-1 to Si. It is limited by a fixed threshold: 
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node dissimilarity  Δdissnode(Si-1,Si) ≤ THnode          (3) 
arc dissimilarity  Δdissarcatt(Si-1,Si) ≤ THarcatt          (4) 

A second constraint limits the increase of the global matching cost: 
global cost  Δcost( Si-1, Si ) ≤  THcost           (5) 

Determination of dissimilarities 
We discuss now with more details the computation of the different dissimilarities 

which contribute to the global matching cost. The rotation fitting error erotfit(Sq) is 
defined as the (weighted) sum of the squared Euclidean distances between the rotated 
reference normal vectors and the corresponding scene normal vectors, accumulated 
over all the q scene node / reference node correspondences (NSn, NRn) of a hypothesis 
Hq. 

erotfit(Sq)  =  
1

2 ∑
root

q
 γn

   ∑
root

q
γn|normal(NSn)-Rq(normal(NRn)) |2) (6) 

Δerotfit(Sq-1, Sq) = erotfit(Sq-1) - erotfit(Sq)   (7) 
The dissimilarity of surface area is a relative measure bounded to a range [0..1], 

enabling hence its integration in the global "cost" expression: 
       Δdissarea(Si-1, Si) =                 

dissarea(NRm, NSn) = 
|area(NRm) - area(NSn) |

 max(area(NRm), area(NSn))     (8) 

In an identical way, the dissimilarity of the "border length" attributes is handled, the 
cumulative value is computed over all arcs matched for a given extension from 
hypothesis Hq-1 to hypothesis Hq: 

dissborder(ARm,ASn) =
|border(ARm)-border(ASn)|

 max(border(ARm),border(ASn))   (9) 
 

Δdissborder(Si,Sk) = ∑ dissborder(ARm, ASn) )   (10) 

Structural dissimilarities 
With the hypothesis that the reference graph contains reliable information, we apply 

some isomorphic error correction while extending the scene graph/reference graph 
matches, the number of deleted respectively added arcs being considered in the final 
cost computation. 

Combining dissimilarities 
In order to determine an overall cost function, dissimilarities determined for each 

type of attribute and for structural differences are combined so that search-tree states of 
different levels, representing matches of different sizes, can be compared: weighting 
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must depend on the number of elements involved. 

 C(Sk) = 
αΣdarea(Sk) + εerotfit(Sk)

number of nodes(Sk)   + 
βΣdborder(Sk) + γAins(Sk) + δAdel(Sk)

Amatch(Sk) + Ains(Sk) + Adel(Sk)  (11)  

The cost function is composed of two parts: the first related to the nodes, the second 
to the arcs. The first part is the weighted sum of accumulated dissimilarities of the area 
of the matched surface patches Σdarea(Sk) plus the mean squared rotation fitting error 
erotfit(Sk) divided by the  number of matched nodes. The second part consists of an arc-
dissimilarity measure: the sum of arc attribute dissimilarities Σdborder(Sk), increased by 
a dissimilarity involving the number of inserted (Ains) and deleted arcs (Adel) divided 
by the number of arcs involved (matched, inserted and deleted). α, β, γ, δ and ε are 
weighting parameters. 

5. Experiments and results 

Weighting parameters determination 
In a first series of tests, we determined adequate weighting factors for the overall 

cost. The resulting set of parameters is {α=0.05, β=0.04, γ=0.01, δ=0.01, ε=0.9}. This 
same set was them used for all subsequent experiments. 
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Figure 6:  determination of weighting parameter (test object "P" left, reference object "Pyramid2" right) 
Trying to interpret the influence of the weighting parameter on the search strategy, 

we see that the cost is dominated by the rotating fitting error (ε=0.9). The search takes 
therefore full advantage of the robustness of the rigidity constraint. 

For the parts of the cost which are weighted by α, β, γ, δ and ε, they are 
discriminatory in cases showing fitting errors close to zero and in the case of a search 
state with a single node-match where rotating fitting does not apply. 

Object recognition: single scene object / multiple reference objects 
The second set of experiments deals with the 3D recognition problem where a single 

object in the scene is matched with multiple reference objects. Figure 7 shows a simple 
example: scene object P (b) was tested against the two reference objects, CUBE1 (a) 
and PYRAMID2 (c). 
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Figure 7: single-object recognition: reference objects CUBE1 (a) and PYRAMID2 (c); test object P (b) 
For the first ten hypotheses found, the match between scene object P and reference 

object PYRAMID2 always delivers a lower global cost than the match with the second 
reference object CUBE1 : the algorithm behaves as expected. 

Object recognition and object separation 
The third set of experiments deals with the 3D recognition problem of occluded 

objects. The PFRG of a scene CP (Figure 8), showing a cube that partially occludes a 
pyramid, was tested vs. the reference PFRGs CUBE1 and PYRAMID2 (Figure 6, 
right). The algorithm described before, together with a simple test of hypothesis 
compatibility, we obtain the desired result, represented in figure 8 next page. 

The "best" set of compatible solutions contains the correct match between reference 
object CUBE1 and the part of scene CP representing the cube and the reference object 
PYRAMID2 with the part of the scene representing the pyramid. The "best" set of 
compatible solutions contains the correct match between reference object CUBE1 and 
the part of scene CP representing the cube and the reference object PYRAMID2 with 
the part of the scene representing the cube and the reference object PYRAMID2 with 
the part of the scene representing the pyramid. The "best" set of compatible solutions 
contains the correct match between reference object CUBE1 and the part of scene CP 
representing the cube and the reference object PYRAMID2 with the part of the scene 
representing the pyramid. 

Nevertheless, with our choice of high-level representation and correspondence-
search criteria, the probability of erroneous correspondences increases, in particular for 
the partially occluded objects. Match results must be completed, either by subsequent 
(low-level) verification or by the use of richer data in both the high-level representation 
and the correspondence-search criteria. 
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Figure 8: two compatible solutions: scene CP vs. references  CUBE1 and PYRAMID2 

6. Conclusions 

In the present paper, we have described the algorithm used for the solution to the 
inexact high-level matching problem in the context of 3D-object recognition. Given two 
high-level object representations in the form of attributed relational graphs, we extract 
the most promising (partial) matches so that we can set up hypotheses on the 
correspondence between reference and scene objects. The match of the two subparts of 
reference and scene objects is characterised by a dissimilarity measure that accounts for 
matching cost and a transformation - the geometrical rotation the reference object has to 
undergo so that it fits the scene data best. 

We treat the subject of graph matching as a tree-search problem. Since full search is 
computational complex, we use best first search together with constraints that enable 
efficient pruning of the search tree. The most important constraint we use is rigidity. 
Despite good results obtained with it, additional tree-pruning constraints based on the 
remaining graph attributes had to be added in order to deal with cases where the rigidity 
condition is not sufficient, e.g., for man-made objects where perpendicular and parallel 
faces are common. 

A final match, consisting of a set of 1-1 node matches, is characterised by an overall 
similarity measure as well as by the geometrical transformation that best maps a 
reference object to the scene. Various experiments show sound results obtained with the 
described algorithm, i) for object recognition with single-object scenes and ii) for object 
recognition and object separation for multiple-object scenes, including objects which 
occlude themselves mutually. 

Finally, the presented algorithm should not be considered a complete solution. 
Rather it should be considered as a building block for a more elaborate recognition 
system that also considers, among other things, subsequent verification of the generated 
hypotheses. A more elaborate system would also include object representations using 
additional information, e.g., descriptions of edges and surface shape. 
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