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Abstract. In this paper, we present the implementation of an autonomous mobile robot controller
based on a behavioural architecture. This architecture is composed of three layers: sensori-motor,
behavioural, sequencing. The paper describes its general structure and the function of its main
elements. It further analyses the development of an example task presenting the advantages of such

an architecture.
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1. INTRODUCTION

The ability of a mobile robot to achieve reli-
ably tasks in a real environment depends essen-
tially on the architecture of its controller. We
use an behaviour-based architecture that com-
bines the advantages of both the behavioural and
the centralised architectures. This architecture
distributes distinct competence levels in three lay-
ers: the top layer implements tasks as a se-
quence of behaviours thanks to a state automa-
ton, the intermediate layer implements a set of be-
haviours, and, finally, the bottom layer servoes the
robot. Qur architecture extends the behavioural
approach discussed for example in (Brooks, 1986)
to more complex tasks, by offering the possibil-
ity to define and execute the goals as sequences
of simple behaviours, and by the use of a world
model.

In order to demonstrate our architecture, we
choose a task where the robot has to tidy up chairs
in a room, by pushing and aligning them, using a
sequence of simple vision-based behaviours.

The architecture is realised in the form of a devel-
opment environment called MANO (Mobile Au-
tonomous robot system NOmad200) which main
features are (i) the decomposition of the archi-
tecture layers and its implementation in a set of
concurrent processes, (ii) a blackboard, handling
information exchange between elements of the ar-
chitecture, and (iii) a virtual robot offering the
possibility to control either a real robot or a sim-
ulated one.

2. RELATED WORK

There exists two basic kind of architectures to
control the robot: centralised architectures and
behavioural architectures.

The centralised architectures (Albus, 1991) split
up the robot control in three modules responsi-
ble for: sensing, planning and acting. First, the
sensing module builds a high-level representation
from sensed data. Then, using this information,
the planning module generates the robot actions
which are finally executed in the acting module.
These architectures are convenient for high-level
planning tasks but are not time-efficient and have
difficulties to cope with uncertainties and noise
issued from the real world.

The behavioural architectures (Brooks, 1986) sep-
arate the robot control in several hierarchical lay-
ers. FEach layer is responsible for a complete
processing from sensing to control and interacts
directly with the environment. The layers are
organised hierarchically: the modules of upper
layers activate or deactivate the modules of the
underlying layers. The result is good robot-
environment interaction with limited possibilities
for the description of the tasks. For real applica-
tions, it 1s often difficult to partition a global task
in a set of elementary modules because (i) the de-
cision element is distributed over several modules,
and (ii) there is no model of the robot’s world.

In this late decade, hybrid architectures or
behaviour-based architecture have been proposed.
They tend to combine the centralised and the be-



havioural approach in order to take advantage of
the quality of both. They usually feature a multi-
layered hierarchical architecture (Thorpe, 1992).
The lowest layers are organised according to the
behavioural architecture, providing strong reac-
tivity between the robot and the environment.
The topmost layer is responsible for the temporal
or spatial organisation of behaviours. It is based
on a model of the world and on data provided by
behaviours.

A number of methods have been proposed to or-
chestrate the behavioural activation: Petri nets
(Freedman, 1992), rule-based planning (Slack,
1992; Noreils and Prajoux, 1991), programming
language (Coste and Espiau, 1992), state automa-
ton (Duan and Kumara, 1993), contingency table
(Connell, 1992).

In the architecture presented here, the sequencing
of the behaviour activity is performed by a state
automaton.

3. ARCHITECTURE

Our architecture is composed of three layers
(Fig. 1) : sensori-motor, behavioural, and se-
quencing. The layer operates asynchronously with
respect to each other. The lowest one, called
sensori-motor layer, is based on control theory and
on signal processing. It is responsible for the el-
ementary movements of the robot and processes
data acquired by the sensors. The second is the
behavioural layer. It is composed of a set of be-
haviours that on one hand control the robot with
respect to environmental characteristics, and on
the other hand manage measures of the world. On
top, the sequencing layer implements tasks which
are described as sequences of behaviours. We use
a state automaton which receives as its input the
status vector § corresponding to the status of the
behaviours, and which activates elementary be-
haviours, by means of the activation vector d.
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Figure 1 The architecture is composed of three
layers: (i) sensori-motor, (ii)
behavioural, and (iii) sequencing.

3.1 Sensori-motor layer

The sensori-motor layer interacts with the envi-
ronment by sending command signals to the ac-
tuators and receiving signals from the sensors. It
1s characterised by fast interactions and is mostly
hardwired. Typically, the movements of the robot
are controlled by servo loops, both for velocity and
position. This layer receives commands from the
upper-layer in form of a vector ¢ and provides pro-
cessed sensor measures as a vector m.

3.2 Behavioural layer

This layer (Fig. 2) is composed of a set of N con-
current behaviours b; performing two main func-
tions. The first function is to control the robot
by means of a set of reactive behaviours called
external behaviours. It is the composition of this
set and the variety of the behaviours which de-
fine the capability of the robot to interact with its
environment. The second function is to manage a
database (DB) storing world measures and the pa-
rameters of the tasks. Data acquisition and data
processing are performed during the execution of
a task, by a set of behaviours called by analogy
wnternal behaviours.
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Figure 2 Interactions of world-driven By,
data-driven By, and internal
behaviours B4 with database DB and
acquisition module A.

External behaviours. The external behaviours
control the robot either with respect to a real
world characteristic (world-driven behaviour), or
with respect to information provided by the
database (data-driven behaviour). Only one of
these behaviours i1s allowed to control the robot
at the same time, so that their output C' =
(Cw,Cp) = (¢1,...,Cu) are switched by a se-
lection module A. According to the activation
vector @ = (ay,...,an), the selection module se-
lects the robot command of the active behaviour
for controlling the robot.

= A(C,d) = C"if a; = activated (1)



The world-driven behaviours are made of the
closed loop formed by the world, the sensors, the
behaviour module, and the actuators. The mod-
ule interacts via measures of the world m provided
by the sensori-motor layer and robot commands
¢. Each world-driven behaviour module extracts
specific world characteristics, called sign patterns,
from the measures m . Each time an expected
sign pattern appears, the behaviour is stimulated.
It then controls the robot as long as the sign pat-
tern remains present.

Formally, we express a world-driven behaviour
module as a vector map.

(5w, Cw) = Bw (1) (2)

The data-driven behaviours are same except they
don’t extract a sign pattern from the world mea-
sure, but they compute a reference value by means
of database information. The data-driven be-
haviour controls the robot with respect to this ref-
erence. When adequate informations are available
in the database, the behaviour is stimulated. The
vector map of the data-driven behaviour modules

is defined by:

-

(5p,Cp) = Bp (1, d) (3)

Each external behaviour provides a signal, called
status s, which describes its internal stimulation
state. This status takes three values : not stimu-
lated (s = 0), stimulated (s = 1), satisfied (s = 2).
The presence of a sign pattern (world-driven)
or of information in the database (data-driven)
stimulates a behaviour. The satisfied status is
reached when the expected configuration of sign
patterns (reference value) appears (world-driven-
behaviours) or when the reference value is reached
(data-driven behaviour).

Internal behaviours. The internal behaviours
are responsible for the acquisition of measures.
When activated, the internal behaviour reads a
single or a series of measures m and stores them
in the database d. These behaviours are always
stimulated (s = 1). Formally:

-

(54, d) = Ba(ni, @) (4)

Activation and status. The status of each
kind of behaviours are grouped in a vector 5§ =
(8w, 5D, 54). In the same way each behaviour ac-
tivation a; forms a vector @ = {ay,...,an}. These
two vector are the only information exchange be-
tween the behavioural layer and the sequencing
layer.

3.3 Sequencing layer

While each behaviour solves a small part of a
robot task, the sequencing layer composes them
to achieve a more complex one. According to a
pre-programmed strategy and to the current sta-
tus of the behaviours &, this layer activates the
suitable behaviours by sending the activation vec-
tor @ to the behavioural layer.

The activation vector is generated thanks to a
state automaton we call Behaviour Activation Au-
tomaton (BAA). It is an extension of both a Fi-
nite State Automaton (FSA) and a Moore Ma-
chine (MM) (Duan and Kumara, 1993; Harrison,
1965; Hopcroft and Ullman, 1979). This automata
extend the FSA formalism by adding output sym-
bols and an output function. The BAA completes
also the MM by the introduction of final states.
A BAA M is described by a seven-tuple:

M:{Q,QO,F,(S,S,O[,A}

where:

e @ = {q0,91,---,qn} 1s a finite set of internal

states,
® qg is the starting state,

o F'={q;} is a set of final states,

e S = {s_i, .. .,5_’;} is a set of input status vectors,
e A = {a_i, .. .,a_?} Is a set of output activation
vectors,

0§ (QxS)—p(Q) the set of transition functions.

e o : ()—X 18 an mapping from @ into X.

The BAA input is a series of status vector &

representing the status of all behaviours, and its
output is a series of vector @ indicating which
behaviour must be activated. The BAA inter-
nal states represent the activity of the behaviours
level. For each input vector 5 correspond a tran-
sition from the current state either to itself or to
another state. When a state is reached, an ac-
tivation vector @ is generated. The final states
are necessary to indicate that the robot task is
achieved.

A graphical representation of the BAA is shown
in figure 3 where following notation is used.
Circles show the different states ¢; with the in-
ner notation indicating the activated behaviours
{b; | a(qj) = @, al # 0}. The arrows to the same
states are ignored and those between two different
states (g¢;, ¢;) are marked with the status which are
taken into account. {s; | §(¢;,5%) = ¢;, st # ®}.
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Figure 3 Element of state automaton BAA.

The concentric circles are final states: success or
failure.

4. DEVELOPMENT ENVIRON-
MENT MANO

MANO is the development environment (Hiigli et
al., 1993; 7) for our mobile robot. It implements
the principle of our architecture (Fig. 4). The core
of this environment is composed of a virtual robot
unit and of a blackboard handling the communica-
tion between the different layers. The three layers
of the architecture are connected to these central
elements. The sensori-motor layer is implemented
on dedicated hardware located in the robot itself
and on additional external units. The two other
layers together with the blackboard and the vir-
tual unit are distributed over a network of SUN
workstations.

The virtual robot unit links the robot and the
blackboard. It offers an interface with equivalent
access to both the real and a simulated robot. The
transition from real robot to simulated robot is
possible at any time by a simple switch. In ad-
dition to the simulator, the virtual robot inter-
face provides extended capabilities to monitor the
robot, sensor data, commands, position etc.

The blackboard is the communication channel be-
tween the virtual robot, the behavioural layer and
the sequencing layer. It acts as a server, using a
TCP/IP connection protocol. Clients can connect
from any point of the network.

4.1 Sensori-motor layer

The robot Nomad 200 — from Nomadic Technolo-
gies (Nomadic, 1992)— is a one-meter-tall robot
moved by a three wheel synchro-drive motion sys-
tem; its upper body can be rotate around its ver-
tical axis. It provides sensors of different types:
16 sonars, 16 infrared range-sensors and 20 tactile
sensors. The communication between the robot
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Figure 4 Development environment MANQO.

and the virtual robot is established via a serial ra-
dio link. The sensori-motor layer is implemented
on a number of PC-boards: the servo loops con-
trolling the robot are on board while some vision
processing is currently performed remotely

Two active vision-based sensors have been added
on top of the robot: a wision by landmark sen-
sor and laser-range sensor (Hugli et al, 1992).
The former uses a light source coupled to a video
camera to enhance the contrast of reflecting land-
marks distributed in the environment. The bright
landmarks are detected, labelled and tracked in a
dedicated Transputer system. The latter uses the
principle of triangulation to measure the distance
of objects in the robot environment. The specific
range sensor we use applies triangulation between
a plan of light and the line of sight relative to
a pixel of the camera. The plane of light of the
laser intersects with the environment in a profile
line which geometry is finally obtained.

4.2 Behavioural layer

The behavioural modules are implemented as
Unix processes and run fully independently. They
are client of the blackboard server and read from it
(i) the measures 1m provided by the sensori-motor
layer and (ii) the activation vector @ provided
by the sequencing layer. The behaviour modules
write their robot commands ¢; and their status s;

on the blackboard.

4.3 Sequencing layer

The sequencing task is implemented in form of
a state automaton as a Unix process . It ex-
changes the activation vector @ and the status vec-
tor § with the behavioural layer by communication

through the blackboard.



5. APPLICATION: Tidying up
chairs

As an example of a task implemented on MANO,
we describe here TidyUpChairs in a room. It il-
lustrates how a specific task is ported onto our
behaviour-based architecture. The robot has to
detect chairs located arbitrarily in a room, and to
push them up to a virtual line defined with respect
to a fixed position of the environment (Fig. 5).
This fixed position, called homing point, is defined
by two landmarks. The virtual line is parallel to
the line supporting the two landmarks. This task
needs a minimal world representation in form of
the homing position and the virtual line position.

Figure b shows the TidyUpChairs task decom-
posed in a sequence of simple behaviours. First,
the robot performs a wander around behaviour
(WA behaviour) until the homing (HO) is stim-
ulated by the two homing landmarks. Then the
robot executes the homing (HO). When the hom-
ing point is reached, the current position of the
robot is stored (GP) in the database for further
use. From this point the robot searches chairs by
looking around (SC). If a chair is found, it goes
towards the selected chair (GC). Then, the robot
turns around the chair until it 1s positioned on the
side of the chair opposite to the virtual line (AC)
and pushes the chair (PC) until the line is reached.
Finally it returns to the homing area (RH) and ad-
justs its position (HO). The task ends if no more
chairs are detected (SC).

Homing landmarks Virtual line

d
Homing .
point X
chair &
landmark

Robot

Figure 5 TidyUpChairs decomposed into
behaviours.

5.1 Sensori-motor layer

Two vision sensors are used: wiston by landmark
detects chairs marked with reflective material and
fixed homing landmarks, while laser-range sensor
detects obstacles in front of the robot. Odometer
sensor 1s used to move the robot to the virtual line
and to bring the robot back to the homing area.

5.2 Behavioural layer

The database contains the position of the homing
point (X,,Y,,0,) and the position of the virtual
line d with respect to the homing point. The for-
mer is acquired during the task even though the
latter is a parameter of the task.

The behaviours needed to tidy up chairs are de-
scribed below:

e Wandering around (b4 € Bw): this behaviour
moves the robot forward and uses the ring of in-
frared sensor to detect a possible obstacle. If an
obstacle is detected, the robot turns away from
it and starts moving forward again. Its status is
always stimulated (swa = 1).

e Homing (bgro € Bw): based on vision by land-
marks, the homing behaviour (Facchinetti and
Hiigli, 1993) brings the robot in a fixed config-
uration with respect to two landmarks. The be-
haviour is stimulated (sw4 = 1) as soon as two
landmarks are visible and it is satisfied (swa = 2)
when the defined configuration of the landmark
appears.

e Searching a chair (bsc € Bw): searching a
chairs is a behaviour which is stimulated when a
chair landmark is visible (ss¢ = 1). Tt then turns
the robot in the direction of the nearest landmark
and stops it (sg¢ = 2).

e Going to a chair (bge € Bw): this behaviour
moves the robot forward and servoes its move by
centring the centermost landmark in the image. It
stops when the vertical position of the landmark
is below a given threshold (sgc = 2).

e Aligning on the chair (buc € Bp): based on the
orientation of the robot #, stored in the database,
and on the current orientation #, this behaviour
moves the robots around a chair, until 1t is ori-
ented perpendicularly to the virtual line.

e Pushing the chair (bpe € Bp): using the odom-
etry, it move the robot to the virtual line which
position is given in the database.

e Returning home (bpgy € Bp): using the cur-
rent position (X,Y,6) and the homing position
(X,,Y,,0,), this behaviour brings the robot back
to the homing point.

e Obstacle detection(bop € Bw): using the laser-
range sensor, this behaviour detects obstacle in
front of the robot.

o Getting position (bgp € Ba): this internal be-
haviour stocks the current robot position in the
database. It is activated the first time the robot



is on its homing position.

5.3 Sequencing layer

At the sequencing layer, the TidyUpChairs task
has a pre-programmed structure described by the
BAA shown in figure 6. The bold arrows represent
the sequence of behaviours [HO-SC-GC-AC-PC-
RH] shown in Fig. 5. This cycle is accomplished
as long as there are chairs to be tidied up, and no
obstacle is detected. The detection of an obstacle
leads to others states, indicated by thin arrows.

OWorId-driven behaviour

Q Data-driven behaviour
D Internal behaviour

Figure 6 The TidyUpChairs task represents as
an Behaviour Activation Automaton.

The laser range sensor detects obstacles in a an
oblique triangle in front of the robot, provieded
by a structured light source. This triangle is de-
fined by its intersection with the ground, 140 cm
in front of the robot, and the light source mounted
on the to of the robot, at a height of 1 meter.
This configuration prevents the detection of close
objets. In particular the chairs are not detected
when they are near the robot. The OD behaviour
is not activated when the robot go towards a chair
(GC), since the chair would be consider as an ob-
stacle. On the contrary the OD behaviour is acti-
vated when the robot pushes a chair, because they
are under the laser plane. In this case, if an obsta-
cle 1s detected, the robot pushes the chairs up to
the obstacle and then returns home. During the
way back the presence of an obstacle activates the
wander around behaviour until the homing land-
marks are visible. The task fails only when the
homing behaviour looses the landmarks while it
is performing.

The TidyUpChairs task performs as desired. Fig-
ure 7 shows the robot while performing the
TidyUpChairs task. Many tests have been run

with various chairs and homing landmark config-
urations: Without obstacle the programmed se-
quence leads to the kind of path shown in figure 5
(path: HO-SC-GC-AC-PC-RH-HO).

Figure 7 Robot while performing the
TidyUpChairs task.

6. CONCLUSION

In this paper we present a behaviour-based archi-
tecture composed of three layers: sensori-motor,
behavioural and sequencing, and describe their
structure and interaction. In particular, we define
the task to be performed by the robot as a state
automaton responsible for the sequencing of the
behaviour activity. We illustrate and demonstrate
this architecture in a development environment
called MANO that runs on a network of work-
stations, a Nomad200 mobile robot and dedicated
vision hardware. It also encompasses various sens-
ing devices at the sensori-motor layer and a large
set of behaviour at the behavioural layer. To il-
lustrate the architecture functionality, we present
the TidyUpChairs task that is expressed in terms
of the state automaton.

The experiment demonstrates the succesful im-
plementation of this task using this approach. It
shows the advantage of this sequencing approach
to describe tasks, which can hardly be expressed
in a conventional behavioural architecture. Fi-
nally, the use of a simple database at the be-
havioural level allows some additional flexibilities
in the execution of the task.
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