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Abstract

One of the problems autonomous mobile robots are

confronting is representing and learning spatial knowl-

edge in order to operate in a physical environment. A

proposition for the body of this knowledge is the cog-

nitive map [3, 14, 15], which may be analyzed in two

ways. From a topological point of view (or reasoning

level), a symbolic representation is central to the cog-

nitive map. From the robot resources point of view (or

control level), the cognitive map is grounded in the in-

teraction of the robot sensors and actuators with the

environment.

In the autonomous architecture we developped for

our mobile robot, the control level consists of a multi-

tude of simple behaviours that servo the robot moves

to low-level visual primitives of the environment, such

as points and segments extracted from image se-

quences [6, 7]. The behavioral approach is inspired

to some extent by the animal world, where a behav-

ior may be described as an independent stereotyped

action that is maintained by a specific perceived stim-

ulus [13]. This approach is already amenable to simple

tasks that move the robot along a wall, avoid unex-

pected obstacles or go towards objects. However, a

common problem is that typical navigation problems

that require spatial knowledge (a topological map)

are difficult to solve, since the robot interacts with

the environment with reactive behaviors that are not

mapped in the robot parameters space [4].

We propose in this paper a self-positioning strategy

based on a new class of vision-based homing behaviors

that provides the critical link between the reasoning

and control levels. The homing behaviours control

the robot moves so that they tend to match one (or

more) sensed visual primitive(s) against one (or more)

predefined reference(s). A reference is an ideal visual

primitive with predefined orientation and image coor-

dinates. As a result, self-positioning sites are defined

in the environment where visual primitives may stim-

ulate one homing behaviour. A main concern is to

characterize which visual primitives may be used to

define stable self-positioning sites.

The control strategy of the homing behaviours aims



Figure 1: NOMAD robot homing on a corner site

using a horizontal laser line-stripping vision sensor

(which trace is visible on the corner of the wall). A

second camera is placed vertically for homing on ceil-

ing structures.

at finding local maxima of the function that describes

the transform between the visual primitives and their

references. Unlike other approaches for which the

maxima can be easily found by means of hill-climbing

strategies [3, 10], the vision-based homing behaviours

have to face a fairly complex, geometrically con-

strained parameter space. Hence, we use visual- and

position-based servoing techniques for controlling the

robot moves [12]. Both control strategies provide ro-

bust performance, eliminating the cumulative position

error of the sensor and actuator uncertainties at the

site center.

At the topological level, the self-positioning sites

are symbolized by nodes, whereas all the other reactive

behaviours are represented by edges [2, 5]. Nodes and

Figure 2: The robot is moving between self-positioning

sites (numbered 1 through 3) using homing behaviours

to reset the cumulative drift due to the robot sensors

and actuators uncertainties.

edges form a network that describe the spatial knowl-

edge of the robot about its environment (see Figure 2).

This map can be used to plan the robot actions, dis-

tinguish ambiguous sites and explore unknown regions

of the environment.

The ability to learn the environment structure for

an autonomous robot is a critical feature, since manual

input of information most natural for humans may not

correspond well to data to which the robot has sensory

access, especially within our behavioral context. We

use learning techniques to find and characterize new

self-positioning sites, as well as build the topological

map of unknown environments [3, 11].

Our self-positioning approach contrasts with more

expensive and fragile traditional positioning (or local-

izing) approaches [1, 8, 9] that estimate the robot posi-

tion by matching sensed features against a geometrical

model of the environment, using stereoscopy (2 or 3

cameras), dynamic vision (single mobile camera) or

similar techniques. These approaches are essentially

robot-centric: they aim at reconstructing the environ-

ment from the robot sensors point of view. This is a

rather complex problem that requires heavy compu-

tation and for which most of the efforts while trying

to solve it generally aim at coping with the unstable

nature of both robot resources and the real world.

Self-positioning may have different aspects depend-

ing on the sensor that is used for the implementa-



Figure 3: Behaviors such as homing on landmarks,

going to a target and detect obstacle are used cooper-

atively for tidying up chairs in a room.

tion. We developed three homing behaviours, based

on different vision systems, for evaluating the self-

positioning concept on a real robot. The selected vi-

sual primitives are reflective landmarks, simple ceiling

structures and wall corners (see Figure 1). We ran

a set of experimental tests that showed good robust-

ness for the homing on corners and homing on land-

marks behaviors [4]. The homing on ceiling structures

is currently being evaluated. The tests show that self-

positioning reduces the cumulative drift due to the ac-

tuators and odometric sensors uncertainties to a max-

imal value of 15 cms, along any path defined in the

topological map (a simple example is shown in Fig-

ure 2). The homing precision can be reduced up to

about 5 cms, which is the limit fixed by sensor resolu-

tion, at the cost of a much slower performance. Sim-

ilarly, the minimum orientation precision is less than

1 degree.

The homing on landmarks behaviour has been also

supporting navigation for a structured task we devel-

oped for tidying up chairs in a room. This task ran

succesfully during demonstration sessions of about one

hour, showing good autonomy (see Figure 3).

The homing behaviors provide means for the robot

to learn the structure of unknown environments by

reducing their huge noisy spatial state spaces to a

small amount of stable self-positioning sites and paths.

With them, navigation is possible in terms that were

conceptually reserved so far to positioning-like ap-

proaches (using traditional geometric and probabilis-

tic methods). We are currently extending the self-

positioning approach in the context of a task that ti-

dies up and moves chairs in a physical environment

consisting of offices and hallways.
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