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Abstract 

This paper considers the matching of 3D objects by a 
geometric approach based on the iterative closest point 
algorithm (ICP), which, starting from an initial 
configuration of two rigid objects, iteratively finds their 
best correspondence. The algorithm does not converge 
always to the best solution. It can be trapped in a local 
minimum and miss the optimum matching. While the 
convergence of this algorithm towards the global minimum 
is known to depend largely on the initial configuration of 
test and model objects, this paper investigates the 
quantitative nature of this dependence. Considering the 
space C of relative configurations of the two objects to be 
compared, we call range of successful initial 
configurations, or SIC-range, the subspace of C which 
configurations bring the algorithm to converge to the global 
minimum. In this paper, we present a frame for analyzing 
the SIC-range of 3D objects and present a number of 
original experimental results assessing the SIC-range of a 
number of real 3D objects. 

1. Introduction 

Geometric matching represents a powerful method for 
the recognition of 3D objects. It applies to objects 
represented by their geometry and is typically used to 
compare the shape similarity of two objects subject to a 
rigid transformation. 

When correspondences between the elements of two 
objects are known, the matching is solved classically by 
finding the optimal rigid transformation [12]. When 
correspondences between the two objects are unknown, the 
problem cannot be solved in closed form but a solution is 
provided by the iterative closest point (ICP) algorithm [2]. 

Thc ICP algorithm starts from an initial configuration of 
two rigid objects and iteratively finds their best 
correspondence. This algorithm is proven to converge but 
does not converge always to the best solution. It can be 
trapped in a local minimum and miss the global minimum. 
While the convergence of this algorithm towards the global 
minimum is known to depend largely on the initial 
configuration of test and model objects, few is known 
about the quantitative nature of this dependence. 

Every well designed recognition system uses a priori 
knowledge to constraint the recognition search. The more 

the knowledge, the less complex the search. In previous 
works using geometric matching methods, initial 
configurations are derived from contextual knowledge 
about the range finder setup [8][3][4] or found 
automatically by extracting some features as curvature or 
edges [1][9][10][5]. In absence of a priori knowledge or 
robust features, the ICP algorithm is started with multiple 
different initial configurations. In a brute force approach, 
the ICP algorithm is even started with initial configurations 
covering the whole configuration space [6] .  

In any case, the recognition strategy and performance 
depend on the nature of the convergence towards the global 
minimum. The lower the constraints on the exact choice of 
an initial configuration, the less the number of initial 
configurations required to solve the problem. In other 
words, the larger the convergence range, the less complex 
the search. Knowing quantitatively the convergence range 
of objects is therefore a key towards the design of efficient 
recognizers. 

This paper presents work carried out for assessing the 
quantitative convergence range for the geometric matching 
of 3D objects. After a definition of the convergence 
properties, we present a frame for analyzing the matching 
convergence range of 3D objects. We present a number of 
original experimental results assessing the matching 
convergence properties of several real 3D objects acquired 
by range imaging. 

2. Convergence of ICP 
This section discusses the convergence properties of ICP 

and introduces the notion of SIC-range. An example 
illustrates SIC-range for 2D objects 

Geometric matching by ICP 
The ICP algorithm used for geometric matching 

proceeds iteratively. In the case of objects represented by 
sets of points, it first pairs every point of the test set with 
the closest point of the model set. All pairs of closest points 
between two objects to be matched are then used to 
calculate the rigid transformation that minimizes some 
distance measure Ek. The test object is then translated and 
rotated by the resulting transformation. This procedure is 
applied repeatedly until the distance fk falls below a 
threshold EO or the number of iterations exceeds a chosen 
value kmax. 
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test 
model 

Fig. 1 : Matching puzzle parts by ICP 

An example o f  the successive steps of matching two 
puzzles is shown in figure 1. We see how the black test 
object is successively moved towards the gray model object 
as the algorithm proceeds. 

Successful initial configuration 
Not all initial configurations of test and model objects 

lead to optimal matching. As an example, figure 2 
illustrates the ccnfigurations of a test and a model puzzle 
before and after matching. Note that in this examplethe test 
is only a subpart of the model. Optimal or successful 
matching is shown in a) while unsuccessful matching is 
illustrated in b). In this later case, the algorithm keeps 
locked in a local minimum and misses the global minimum 
that stands for successful matching. 

Fig. 2: Successful (a) and unsuccessful (b) matching 

SIC-range 
Let us call configuration c, the relative pose of test and 

model and let C denote the space of possible initial 
configurations. Successful matching is obtained only from 
a limited range of C. We name it range of successful initial 
configurations or SIC-range. 

The SIC-range being a subset of the space C of initial 
configurations, we can represent it by a binary function 
f(c), CE C, which is true iff c is leads to successful 
matching. 

Recalling that the SIC-range refers to two objects, we 
can write ftm(c) to refer to test t and model m. Note that 
ftm(c) is in general different from fmt(c), because the ICP 
algorithm, and more specifically the nearest neighbor 
computation used in it, is not commutative. 

In the special case where an object is matched with 
itself, we write the related function fmm(c) . Only in this 
special case the SIC-range refers to a single object. 

Assessing the SIC-range of two objects means exploring 
C and testing each initial configuration c with ICP for 
successful matching, setting f(c) accordingly. With limited 
computing resources, only a limited number of 
configurations can be tested: Therefore, the space of initial 

configurations C is explored at discrete locations Ci leading 
to the discrete function f(Ci). 

The remainder of this paper is devoted to the assessment 
of the SIC-range of various real objects. 

All objects considered from now on, both tests and 
models, are represented by sets of points. Therefore also, 
the ICP algorithm being used is the one relative to points, 
as described previously. 

SIC-range of 2D objects 
For 2D objects, the configuration space is three 

dimensional. A configuration ci is defined for example by 
the coordinates (Xi,yi:wi) referring to the translation (Xi,yi,) 
and relative orientation mi of the two objects. 

Fig. 3: Configuration (x,y,w) and associated 
SIC-range (black sectors) 

To assess the SIC-range of the puzzle of figure 3, we 
consider sixteen translations of the test in a regular grid 
around the model and, for each translation, 36 evenly 
spaced relative rotations w. Test and model represent the 
same object, i.e. f(C)=fmm(X,y,W). Figure 3 plots the 
obtained SIC-range. The center of each circle indicates the 
translation. The black sectors at every grid position indicate 
the angles w for which the matching is successful. 

We observe that the SIC-range is limited in the rotation 
range w and that translation between two puzzles to be 
matched is of minor influence. Very roughly, and for small 
initial translations, the SIC-range of this puzzle can be 
described by w E [+30..-301 degrees. 

3. SIC-range of 3D objects 

presents a useful representation of it as a SIC-map. 

6-dimensional SIC-range 
With 3D objects, the configuration space C is 6- 

dimensional and so is the SIC-range. The analysis of this 
general case is not simple. On one hand, limited 
computational resources impose a limited number of 
configurations to be tested, and do not allow a dense cover 
of C. On the other hand, a representation and a fortiori' an 
interpretation of a 6-dimensional SIC-range is not simple, 
anyhow. Therefore, we search for a meaningful SIC-range 
representation of lower order. 

This section extends the SIC-range to 3D objects and 
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Preferred configurations of 3D-objects 
Let us consider object matching in a frame where following 
general hypotheses hold: 

The model is compact 
Object are represented by sets of points 

The test includes only points from a visible part of the 
object 

test Q zenith angle 
0 azimuth angle 

w view axis rotation angle 

view axis 
0 view point 

model - - 

Fig. 4. Preferred configuration setup of test and model 

In this frame, we define a class of preferred initial 
configurations which we believe are well suited for 
successful convergence. 

The related setup [7] is shown in figure 4 and defined as 
follows. The coordinate system is bound to the model and 
placed at its center of mass. The test object is placed on the 
view axis defined by the camera pointing towards the 
model center at a fixed distance from it. The space of initial 
configurations can then be defined by the triple (Q,0,w) 
where Q and 8 are respectively zenith and azimuth angles 
of the view axis in the model spherical reference system 
and o designates the camera rotation angle around this 
axis. 

Motivations for the selected setup are as follows: 
The test is initially optimally placed near the center of 
the model. 
Placing the test between model and camera ensures the 
test is moved from outside towards the model and 
discourages any match with its invisible parts. 

SIC-map assessment 
Starting from 3D model and test objects, we assess their 

SIC-range by exploring the (Q,0,w) space at discrete 
locations, testing ICP for successful matching and setting 
f(Q&,w) accordingly. 

Being 3-dimensional, the SIC-range can now be 
visualized by a map similar to the one used for 2D objects. 
This SIC-map [ l  11 is defined in figure 5 and examples are 
shown in figure 8. The small circles span the ($,e) space of 
the spherical coordinates. Each circle holds for the (@,e) 
position of the view axis and represents by its black sector 
the associated SIC-subrange for w.  The spherical 
coordinate system is projected on a plane tangent to the 
pole. View points with same zenith angle lie on the same 
circle around the pole and those with same azimuth lie on 

the same radius. View points from the lower hemisphere 
are omitted. 

The SIC-map assessment includes several steps. Start is 
from the pole configuration, which is the pose obtained 
after a first successful match of the model and test. 

From this pole configuration, the complete (Q,,0,w) 
parameter space is explored in discrete steps varying 
azimuth angle 8 from 0 to 360, zenith angle Q from 0 to 
180 and view axis rotation angle CO from 0 to 360 degrees. 
This procedure orientates the test at different view points 
and then rotates it around the view axis. 

q =,go 

q =  
180 

q = 270 
Fig. 5. The SIC-map 

The exact sequence brings the pole axis to the spherical 
coordinates (@,e) by a rotation of the test object by zenith 
angle Q, around the rotation axis which is perpendicular to 
the great circle of azimuth angle 0 as illustrated in Fig. 6. 
Then, follows the rotation o around the view axis. 

Fig. 6. Test transformation from pole to view point 

For every initial configuration the ICP matching 
algorithm is launched, running enough (40) iterations to 
ensure convergence. Note that the criteria for successful 
convergence can be chosen differently. It could be a 
comparison of pose, it can also be a decision on the final 
error. We selected this last criteria for the decision. 

4. SIC-maps of real objects 
The experimental range data are from a light stripe range 

scanner. Light stripe sequences generated by a LCD- 
modulated light source are projected onto the 3D objects 
and recorded with an image camera. A 3D reconstruction 
process applying the triangulation principle delivers a 
single range image as well as the associated intensity 
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image. A separation of object and background is performed 
directly at this level by ignoring the black background of 
the scene. The acquisition step provides therefore directly 
the range data of the object seen under the corresponding 
viewing angle. 

The test object, or simply test, is derived from a single 
range image obtained by above described scanner. The 
range image is transformed to a set of points in R3 whose 
size is reduced by a decimation procedure [7] to a few 
hundreds points. A test is finally a set of few hundred 
points in R3 which stem from the visible surface of an 
object seen by a camera. 

The model object is reconstructed from several range 
images of the same object. First, range images are taken of 
the same real object observed under various viewing 
directions. Practically however, the range scanner is fixed 
and the object is rotated. Then, the set of range images are 
merged with a fusion method, giving rise to the 3D-mode1, 
represented by a set of few hundred points in R3. 

Example sizes of point sets used for SIC-ICP experiment 
are (see fig. 8): fi model 

Cover 
Tape 377 

In summary, a SIC-map stands for a model and a test. Its 

Take multiple range images of a real object and build 
its 3D model 
Take a new range image of the same object and use it 
as test 
Perform a first successful match of test and model and 
use it as pole configuration 
Compute the SIC-map by exploring a number of 
discrete configurations in the (Q, 6, w) space, applying 
ICP matching and deciding whether convergence is 
successful or not. 

experimental assessment involves the following steps: 

Series 1 
Fig. 7 shows the SIC-maps of three toy objects obtained 

experimentally according to above exposed method. Zenith 
angles take the values @=O", IO",  20", . . .60" 

As might have been expected, we observe that the SIC- 
subrange for w (represented by the black sector) decreases 
for view points with increasing zenith angle. For the duck 
and the swan, the effective decrease starts at about @=40" 
while for the fish, it starts earlier, at about 4 ~ 3 0 " .  Globally, 
it is obvious that the duck and swan have larger SIC-ranges 
than the fish. 

Noting WA the width of the o rotation range, @A the size 
of the Q azimuth range, and RA=(@A,w~) the subrange of C 
whose points belong to both ranges, we can have simplified 
subranges of a SIC-range, RA c SIC-range, that provide a 
conservative description of it. i.e. 

R~f i~h=(30" ,  120") 
RA,,~,n=RAdduck=(40",90~) 

In any case, it is interesting to note that the SIC-range 
for all objects is quite large, showing that the geometric 

matching of these objects can take advantage of a relative 
comfortable convergence behavior towards the optimal 
match. 

a) Duck 

b) Fish 

c )  Swan 
Fig. 7. Toys and their SIC-maps 

Series 2 
A second series of experiments was conducted with 3 

different parts of a scotch tape dispenser. For each part, a 
model object was built and three test objects were acquired, 
each with a different view point. 9 tests are thus matched, 
each with its own model. Images of the 9 test views are 
shown in figure 8 together with the associated SIC-maps. 

The purpose of this new experiment is to analyze other 
objects and also the same object with different test views. 

Compared to the first series, the objects are considered 
more complex, in particular, their overall shape exhibit 
more concavities. 
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a0) Base 0 b l )  Cover 1 

al)  Base 1 b2) Cover 2 

a2) Base 2 

bo) Cover 0 

CO) Tape 0 

c l )  Tape 1 
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c2) Tape 2 
Fig. 8. Scotch parts and associated SIC-maps 

Let us discuss the 9 SIC-maps of figure 8 which cover 
here, compared to previous series, a somehow increased 
range of azimuth values: @=O”, lo”,  Z O O ,  . . .80”. 

A number of observations can be made. Compared to the 
SIC-maps of the previous series which were characterized 
by an approximately pole centered SIC-range, the new 
SIC-ranges are characterized by a strong off-pole 
dominance. Comparing for example BaseO, Basel and 
Base2, the dominant part of the SIC-range is found 
respectively in the NW (BaseO), SW (Basel) and SE 
(BaseO) regions on the SIC-map. Other maps show similar 
behavior. 

The second observation refers to the inter-object and 
intra-object variability. If intra-object variability is smaller 
than inter-object variability, we would expect the existence 
of some model specific features. All results obtained in this 
series reveal a comparable intra-object and inter-object 
variability. We thus do not see any object specific features 
that could be used to improve the convergence. 

Notice here that the object tape displays a very dark 
SIC-map and seems therefore to behave differently. This is 
in fact not the case because the darkening of the SIC-map 
has a different cause, namely the existence, with this scotch 
tape, of two optimal matching poses due to the object 
symmetry. 

So far, the reason for the strong off-pole dominance of 
the SIC-range as well as its variation as a function of the 
view axis are still unknown. 

Nevertheless, all measured SIC-maps exhibit a rather 
large SIC-range. To give but a partial idea of its size, we 
introduce again the conservative notation of a simplified 
subrange, and in addition, translate it to the dominant part 
of the SIC-range. A range which is roughly valid for all 
scotch part is: 

5. Conclusions 

Considering geometric matching of 3D objects by the 
ICP algorithm, we presented the SIC-map as a means to 
analyze the convergence behavior towards optimum 
matching . 

The SIC-maps of the toy objects revealed a pole 
centered SIC-map providing relatively comfortable 

’ R~scotch=(30”,60”) 

convergence towards optimum matching. 
The SIC-maps of the scotch parts revealed the existence 

of possibly off-centered SIC-ranges but with similarly 
comfortable convergence towards optimum matching. 

The experimental SIC-ranges have sizes which exceed a 
common conservative subrange of A@ <30° for zenith 
angles and AO <60” for rotation angles. 

Far from being complete these results give nevertheless 
a first insight in the quantitative nature of SIC-ranges. 
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