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Abstract. Visual attention is the ability to rapidly detect the visually
salient parts of a given scene. Inspired by biological vision, the saliency-

based algorithm e�ciently models the visual attention process. Due to

its complexity, the saliency-based model of visual attention needs, for a
real time implementation, higher computation resources than available

in conventional processors. This work reports a real time implementation

of this attention model on a highly parallel Single Instruction Multiple

Data (SIMD) architecture called ProtoEye. Tailored for low-level image

processing, ProtoEye consists of a 2D array of mixed analog-digital pro-

cessing elements (PE). The operations required for visual attention com-
putation are optimally distributed on the analog and digital parts. The

analog di�usion network is used to implement the spatial �ltering-based

transformations such as the conspicuity operator and the competitive
normalization of conspicuity maps. Whereas the digital part of Proto-

Eye allows the implementation of logical and arithmetical operations,

for instance, the integration of the normalized conspicuity maps into the
�nal saliency map. Using 64� 64 gray level images, the on ProtoEye im-

plemented attention process operates in real-time. It runs at a frequency

of 14 images per second.

1 Introduction

Visual attention is the ability to rapidly detect visually-salient parts of a given

scene. Using visual attention in a computer vision system permits a rapid selec-

tion of a subset of the available sensory information. The selected data represent

the salient parts of the scene on which higher level computer vision tasks can

focus. Thus, the computational modeling of visual attention has been a key is-

sue in arti�cial vision during the last two decades. The saliency-based model of

visual attention has been �rst reported in [1]. In a recent work [2], an e�cient

software implementation of this model has been presented. Using a variety of

scene features, such as color, intensity and orientation, the reported bottom-up

model computes a set of conspicuity maps. These maps are then combined, in a
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Fig. 1. ProtoEye platform.

competitive manner, into the �nal saliency map. Finally, the most salient loca-

tions of the scene are detected by means of a winner-take-all (WTA) network.

Due to its complexity, the reported model needs, for a real time implementa-

tion, higher computation resources than available in conventional processors. To

master the complexity issue, some previous works reported hardware models

of visual attention implemented on fully analog VLSI chips [3, 4]. The authors

considered, however, simpli�ed versions of the saliency-based algorithm of vi-

sual attention and implemented only small parts of the model. In both works

emphasis has been put on the last stage of the attention model, namely, the

winner-take-all (WTA) network.

A complete real time implementation of the saliency-based model of visual at-

tention has been reported in [5]. The implementation has been carried out on a

16-CPU Beowulf cluster involving 10 interconnected personal computers, which

might raise problems related to portability and power consumption.

This paper reports a real time implementation of the complete saliency-based

model of visual attention on a low power, one board, highly parallel SIMD ar-

chitecture, called ProtoEye (Fig. 1) [6]. ProtoEye consists of a 35 � 35 array

of mixed analog-digital processing elements (PEs). The digital part of a PE,

working on 4-bit words, contains an ALU, 6 registers and 2 ags. The analog

part is composed of 9 analog multipliers and a di�usion network which e�ciently

performs the task of low and high-pass spatial �ltering of images. Four ProtoEye

chips are connected together to process 64� 64 grey level images, provided by

a CMOS imager. The complete architecture is controlled by a general purpose

microcontroller running at a frequency of 4 MHz, yielding an e�ective perfor-

mance of over 8 Giga operations per second.

The remainder of this paper is organized as follows. Section 2 presents the

saliency-based model of visual attention. The architecture of the SIMD machine

is reported in Section 3. The implementation of the visual attention model on

ProtoEye is discussed in Section 4. Section 5 reports the experimental results.

Finally, the conclusions are stated in Section 6.
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Fig. 2. ProtoEye: Architecture of a processing element (PE).

2 Saliency-based model of visual attention

The original version of the saliency-based model of visual attention presented in

[2] deals with static color images. It can be achieved in four main steps.

1) First, a number (n) of features are extracted from the scene by computing

the so called feature maps (color, intensity, orientations).

2) In a second step, each feature map is transformed in its conspicuity map based

on the center-surround mechanism. Each conspicuity map highlights the parts of

the scene that strongly di�er, according to a speci�c feature, from its surround-

ing. Multiscale di�erence-of-Gaussians-�lters, which can be implemented using

gaussian pyramids, are suitable means to implement the conspicuity operator.

3) In the third stage of the attention model, conspicuity maps are integrated to-

gether, in a competitive way, into a saliency map, which topographically codes

for local conspicuity over the entire visual scene.

4) Finally, the most visually-salient locations are detected by applying a winner-

take-all (WTA) network on the saliency map.

3 ProtoEye: SIMD machine for image processing

The complete vision system is composed of a CMOS imager (352� 288 pixel),

a video output, a general purpose microcontroller (RISC processor) and 4 Pro-

toEye chips (Fig. 1). The 64 � 64 pixel images provided by the camera are

transferred to the ProtoEye architecture by means of a DMA interface. Each

ProtoEye chip then processes a 35� 35 subimage. The same DMA interface is

used to transfer the processing results from ProtoEye to the external memory,

which is interfaced to the video output. The ProtoEye instructions are controlled

by the microcontroller (sequencer) implemented on an FPGA.
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Fig. 3. DoExp versus DoG.

It is obvious that the main component of this vision system is the SIMD machine

ProtoEye. As mentioned above, it is composed of a 35 � 35 array of identical

mixed analog-digital PEs. Each PE executes the same instruction on one ele-

ment of an array of data and is connected to its 8 neighbors. The architecture

of a PE is illustrated in Figure 2.

The digital part of a PE is organized around an internal 4-bit D-bus (D[3:0]).

It contains a 4-bit ALU, which has as input the D-bus and the accumulator.

The ALU operations include all logical functions, addition, subtraction, shifts

of the accumulator content and comparison. The ag F1 can be set to mask

conditional operations. The 6 registers can be used to keep temporary results

within the processing element. In digital mode, transfers between neighboring

PEs can be performed by shifting the accumulator content.

The analog part of each PE (shaded area on Fig. 2) is connected to the digi-

tal part through A/D and D/A converters. Its essential component is the analog

spatial �lter, which is based on a di�usion network, made of pseudoconductances

connecting the PEs [7]. The input of the spatial �lter is the content of the reg-

ister RAM5, converted to current by the D/A converter. Its output is a lowpass

�ltered version of the input image, which cut-o� frequency is controlled by an

external voltage.

4 Implementation issues

This section reports some of the issues which have been considered in order to

optimally implement the attention model on the described architecture.

4.1 Center-Surround �lter

The original version of the attention model realizes the center-surround mech-

anism using multiscale di�erence-of-gaussians �lters (DoG). Practically, a gaus-

sian pyramid is built from a given feature map. Center-surround is then imple-

mented as the di�erence between �ne and coarse scales of the pyramid. To take



advantage of the analog di�usion network, the gaussian �ltering of images is

replaced by the spatial analog �lter whose di�usion length is controlled by two

external voltages VR and VG. It is generally admitted [7] that the behavior of

the di�usion network corresponds to an exponential �lter of the form:

h(x) = k � e
�
x

� (1)

Thus, the conspicuity transformation is implemented as a di�erence-of-exponentials

�lter DoExp:

DoExp(x) = k1 � e
�

x

�1 � k2 � e
�

x

�2 (2)

For comparison purposes, Fig. 3 gives the shape of the DoExp �lter (solid line)

and compares it to the DoG �lter (dashed line). The similarity of both �lters

guarantees the �delity of the modi�ed conspicuity operator to the original one.

Hence, a nine level exponential pyramid P is built by progressively lowpass �lter

the feature map by means of the analog spatial �lter. Contrary to the original

model, the nine level of the exponential pyramid have the same spatial reso-

lution. This is due to the limited resolution of the images that ProtoEye can

process (64� 64).

Six intermediate conspicuity maps are then computed from the exponential pyra-

mid:

C1 = jP(2)� P(5)j, C2 = jP(2)�P(6)j,

C3 = jP(3)� P(6)j, C4 = jP(3)�P(7)j,

C5 = jP(4)� P(7)j, C6 = jP(4)�P(8)j.

Where P(i) is the i-th level of the pyramid P.

These conspicuity maps are sensitive to di�erent spatial frequencies. Fine maps

(e.g. C1) detect high frequencies and thus small image regions, whereas coarse

maps, such as C6, detect low frequencies and thus large objects.

4.2 Conspicuity maps

The computed maps have to be combined, in a competitive way, into a unique

conspicuity map. A normalization strategy, called iterative localized interactions,

is used in our implementation. This strategy relies on simulating local compe-

tition between neighboring conspicuous locations. Spatially grouped locations

which have similar conspicuities are suppressed, whereas spatially isolated con-

spicuous locations are promoted. First, each map is normalized to values between

0 and 15, in order to remove modality-dependent amplitude di�erences. Each

map is then convolved by a large 2D di�erence-of-exponentials �lter DoExp (the

original version of the normalization strategy uses a DoG �lter). The negative

results are clamped to zero after each iteration.

At each iteration of the normalization process, a given intermediate conspicuity

map C is transformed as follows:

C  
jC + C � DoExpj�0

2
(3)
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Fig. 4. Multiscale conspicuity transformation.

where � is the convolution operator and j:j�0 discards negative values.

The �nal conspicuity map C is then computed in accordance with the following

equation:

C =
C1 + C2 +C3 +C4 +C5 +C6

8
(4)

4.3 Saliency map

For each considered scene feature, a conspicuity map is computed. Each of these

conspicuity maps is iteratively normalized, according to Eq. 3. The saliency map

is computed as the sum of the normalized conspicuity maps.

The �nal step of the task consists in selecting the most salient parts in the

image. We implemented a k-Winner-Take-All (kWTA) network based on a large

di�erence-of-exponential �lter. The kWTA is iteratively applied on the saliency

map. It separates the image locations into two categories, winners and losers,

depending on their saliency activities.

5 Experimental results

In this section we report experiments that assess the proposed implementation

of the di�erent steps of the visual attention model discussed in Section 4.



The �rst experiment (Fig. 4) refers to the operation of the multiscale channel.

Two di�erent scene images have been considered. For each image, the six con-

spicuity maps (C1 .. C6) are computed. The activity of the conspicuity maps is

pseudo-colored according to the color palette of the same �gure (top). The �rst

image (left) consists of a small black disc on a white background. The conspicu-

ity map C2 has the highest response among the six maps. Due to the larger size

of the disc on the second image (right), C6 is the conspicuity map that contains

the highest activity. To summarize, this experiment validates the implemented

multiscale conspicuity transformation, since the di�erent conspicuity maps are

sensitive to di�erent spatial frequencies.

Conspicuity map 1. iteration 2. iteration

Fig. 5. Iterative normalization of conspicuity maps.

The second experiment (Fig. 5) refers to the iterative normalization process.

A conspicuity map is considered, which contains on one hand a set of spots spa-

tially grouped and on the other hand a spot, which is spatially isolated. We then

iteratively applied the normalization process on this map. The activity of the

maps are pseudo-colored using the color palette on �gure 4 (top). The spatially

grouped activities are progressively suppressed compared to the isolated spot.

This clearly shows the competition between neighboring conspicuous locations

and thus validates the implemented normalization process.

The last experiment (Fig. 6) refers to the last stage of the attention model,

namely, the kWTAnetwork. Starting with a gray level real image (left), a saliency

map (middle) is computed. The kWTA is then applied on it. The resulting spots

(winners) are colored in red and are mapped onto the original image (right).

To conclude, these experiments clearly validate the on ProtoEye implemented

saliency-based model of visual attention.

6 Conclusion

This paper reports a real time implementation of the saliency-based model of

visual attention on a highly parallel SIMD architecture. Dedicated to low-level

image processing, the fully-programmable SIMD machine consists of an array of
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Fig. 6. Detecting the most salient locations in a grey-level image.

mixed digital-analog processing elements that o�ers high-performance function-

alities for implementing the various functions appearing in the model of visual

attention. Practically, the results of visual attention does not su�er from the re-

quired adaptation of the original model to the available resources. They largely

ful�ll the theoretical expectations. Speci�cally, the on ProtoEye implemented at-

tention algorithm processes 14 images per second, which allows the use of visual

attention in practical real time applications related to computer vision.
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