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Abstract— This paper presents a robot self-localization
method based on visual attention. This method takes advan-
tage of the saliency-based model of attention to automatically
learn configurations of salient visual landmarks along a robot
path. During navigation, the visual attention algorithms detect
a set of conspicuous visual features which are compared with
the learned landmark configurations in order to determine
the robot position on the navigation path. More specifically,
the multi-cue attention model detects the most salient visual
features that are potential candidates for landmarks. These
features are then characterized by a visual descriptor vector
computed from various visual cues and at different scales. By
tracking the detected features over time, our landmarks selec-
tion procedure automatically evaluates their robustness and
retains only the most robust features as landmarks. Further,
the selected landmarks are organized into a topological map
that is used for self-localization during the navigation phase.
The self-localization method is based on matching between
the currently detected visual features configuration and the
configurations of the learned landmarks. Indeed, the matching
procedure yields a probabilistic measure of the whereabout of
the robot. Thanks to the multi-featured input of the attention
model, our method is potentially able to deal with a wide
range of navigation environments.

I. INTRODUCTION

It is generally agreed that vision is one of the richest
source of information for humans but also for machines that
need to interact with their operating environment. There-
fore, vision is becoming a more and more indispensable
component of autonomous robot navigation systems. Par-
ticularly, the landmark-based navigation paradigm makes
extensive use of the visual information about the navigation
environments.

The earliest works that introduced vision into landmark-
based robot navigation used, essentially, artificial land-
marks which are easily recognizable by the robot. The work
presented in [1], for example, used black rectangles with
white dots as landmarks. It is obvious that this approach
requires a modification of the environment which is not
always feasible or desirable. More recent works introduced
novel approaches that use more natural landmarks in order
to solve the problem of robot localization. Fluorescent
tubes, for instance, have been used as landmarks in [2],
whereas the work presented in [3] used posters and door-
plate for the same purpose. These approaches require,
however, precise knowledge about the environment and are
too specific to the considered environment.

More recently, more general approaches have been pro-
posed. They are based on the idea that robots should find

the landmarks by themselves [4], [5]. That is the robot
explores its navigation environment and automatically se-
lects a set of features that can be considered as robust
but also distinctive landmarks. Numerous works have dealt
with the feature extraction problem with the aim to derive
appropriate landmarks. In [6], [7] the authors used intensity
patches that are unique in the environment as landmarks,
whereas vertical edges have been used in [8]. Others used
color interest operator for the same purpose [9]. The Scale
Invariant Feature Transform (SIFT) that extracts features
from grey-scale images at different scales has been used
in [10]. The work presented in [11] uses the fingerprint
concept for selecting landmarks, that is a collection of
features that are unique in the navigation environment. One
of the most used feature detector, however, is the corner
interest operator [12], [13].

It is noteworthy that most of the proposed feature detec-
tion methods for landmarks selection apply on gray-scale
images and only few of them have an adaptive behavior.
With adaptive behavior is meant, here, the ability of a
method to automatically choose the feature detector (cor-
ner, color patches, intensity patches, ...) most appropriate
to the considered environment for the landmark selection
process. For instance, to use corners and vertical lines
in indoor environment and color and intensity patches
outdoor. Since adaptive behavior is one of the strengthes
of biological vision systems, biologically inspired computa-
tional models of vision could be potential solutions to build
adaptive landmark selection algorithms. Particularly, bio-
inspired saliency-based visual attention models, which aim
to automatically select the most salient and thus the most
relevant information of complex scenes, could be useful in
this context. Note that visual attention has been used to
solve numerous other problems related to computer vision,
like image segmentation [14], object tracking in dynamic
scenes [15] and object recognition [16]. The usefulness of
attention in real world applications is further strengthened
by the recent realization of a real time visual attention
system [19].

This paper reports a novel method for robot localization
based on visual attention. This method takes advantage of
the saliency-based model of visual attention at two different
phases as shown in Figure 1. During a learning phase, the
attention algorithms automatically select the most visually
salient features along a navigation path, using various
cues like color, intensity and corners. These features are
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Fig. 1. Overview of the attention-based method for robot localization.

characterized by a descriptor vector whose components are
computed from the considered cues and at different scales.
They are then tracked over time in order to retain only
the most robust of them as the representative landmarks of
the environment. These landmarks are then used to build
a topological map of the environment associated to the
robot path. During a navigation phase the same attention
algorithms computes visual features that are compared with
the learned landmarks in order to compute a probabilistic
measure of the robot position within the navigation path.

The remainder of the paper is organized as follows. Sec-
tion II describes the landmark selection procedure that is
based on the visual attention algorithms. In Section III the
mapping process consisting in representation as well as the
organization of the selected landmarks into a topological
map is presented. The landmark recognition algorithms and
the robot localization approach are described in Section IV.
Section V reports some experimental results that show the
potential of our method. Finally, conclusions and some
future works are stated in Section VI.

II. ATTENTION-BASED LANDMARK SELECTION

In the context of robot navigation reliable landmarks
must satisfy two major conditions: uniqueness and robust-
ness. On one hand, the landmarks must be unique enough
in the environment so that the robot can easily distinguish
between different landmarks. On the other hand, landmarks
must be robust to conditions changes like illumination and
view angle. We intend to solve the uniqueness condition
by using an extended version of the saliency-based model
of visual attention, whereas the robustness condition is
provided by a persistency test of the landmarks based on
a tracking procedure. These two solutions are described in
the sections below.

A. Feature detection and characterization

In order to detect robust features, we use an extended
version of the saliency-based model of visual attention. The
saliency-based model of attention has been firstly reported
in [17] and gave rise to numerous soft and hardware
implementations [18], [19].

The standard model of attention computes a saliency
map, that encodes the conspicuousness of image locations,
according to the following scheme.

1) First, a number of visual cues are extracted from
the scene by computing the cue maps Fj . The cues
most used in previous works are intensity, color, and
orientation. The use of these cues is motivated by
psychophysical studies on primate visual systems.
In particular, the authors of the model used two
chromatic channels that are inspired from human
vision, namely the two opponent colors red/green
(RG) and blue/yellow (BY ).

2) In a second step, each map Fj is transformed in its
conspicuity map Cj . Each conspicuity map highlights
the parts of the scene that strongly differ, according
to a specific visual cue, from their surroundings. This
operation that measures, somehow, the uniqueness of
image locations is usually achieved by using a center-

surround-mechanism which can be implemented with
multiscale difference-of-Gaussian-filters. It is note-
worthy that this kind of filters have been used by
D. Lowe for extracting robust and scale-invariant
features (SIFT) from grey-scale images for object
recognition, stereo matching but also for robot navi-
gation [10], [20].

3) In the third stage of the attention model, the con-
spicuity maps are integrated together, in a competi-
tive way, into a saliency map S in accordance with
equation 1.

S =
J∑

j=1

N (Cj) (1)

where N () is a normalization operator that promotes
conspicuity maps in which a small number of strong
peaks of activity are present and demotes maps that
contain numerous comparable peak responses [18].
In fact S encodes the saliency and ,thus, the unique-
ness of image locations according to used visual cues.

4) Finally the most salient parts of the scene are derived
from the saliency map by selecting the most active
locations of that map. The automatically selected
locations are designated, henceforth, as features.

In a recent work [21], we extended the basic model
of visual attention to consider also a corner-based cue
computed according to the Harris approach [22] for
saliency computation. This extension yielded a more
unique and more robust features.



Once selected, each feature Pi is characterized by its
spatial position xi = (xi, yi) and a visual descriptor vector
fi :

fi =

⎛
⎝

f i
1

..
f i

J

⎞
⎠ (2)

where J is the number of the considered visual cues in
the attention model and f i

j refers to the contribution of the
cue j to the detection of the feature Pi. Formally, f i

j is
computed as follows:

f i
j =

N (Cj(xi))
S(xi)

(3)

Note that
∑J

j=1(f
i
j) = 1.

B. Feature tracking and landmark selection

In order to automatically select robust landmarks from
the set of features computed above, the features undergo a
persistency test. This test consists in tracking the features
over an extended portion of the navigation path and only
those features that have been successfully tracked long
enough are considered as robust landmarks.

The basic idea behind the proposed algorithm is to build
a trajectory T for each tracked feature. Each point of the
trajectory memorizes the spatial information and the visual
descriptor of the tracked feature at a given time.

Specifically, given the M features computed from the
first frame, the tracking algorithm starts with creating M
initial trajectories, each of which contains one of the M
initial features. The initial features represent also the head
elements of the initial trajectories. A new detected feature
Pi is either appended to an existing trajectory (and becomes
the head of that trajectory) or gives rise to a new trajectory,
depending on its similarity with the head elements Ph of
already existing trajectories. The dissimilarity between Pi

and Ph is quantified by a distance d(Pi, Ph) that takes into
account the spatial and the descriptors distances between
the two features. Formally d(.) is defined in accordance
with Equation 4.

d(Pi, Ph) =
‖fi − fh‖
fnorm

+
‖xi − xh‖

xnorm
(4)

where fnorm and xnorm are two normalization factors that
can be determined empirically or learned from a set of
image sequences.

Given the results of the tracking procedure, the next step
of the method consists in selecting the most robust features
as landmarks L. The basic idea is that the cardinality
(Card(T )) of a trajectory i.e. its length directly determines
whether the corresponding features are robust landmarks.
Results reported in [21] shows the efficiency of this criteria
to select robust landmarks.

III. MAPPING

Once selected, the landmarks should be then represented
in an appropriate manner in order to best describe the
navigation environment along the robot path. In this work, a
navigation path is divided into representative portions Eq.
Each path portion Eq is represented by a key frame Kq

which is described by a configuration of the landmarks as
showed in Figure 2.

Three attributes are assigned to the landmarks of a key
frame:

• the horizontal spatial order of the landmarks x indexL

• the mean height yL of each landmark
• the corresponding maximum deviation ΔyL,
• the mean descriptor vector fL of each landmark L
• the corresponding standard deviation ΣL.

Note that these attributes are computed within the corre-
sponding path portion Eq . formally, a key frame Kq is
defined as:

Kq = {Lm |Lm appears in Eq} with Lm =

⎛
⎜⎜⎜⎜⎝

x indexLm

yLm

ΔyLm

fLm

ΣLm

⎞
⎟⎟⎟⎟⎠

(5)
It is to emphasize that the mapping method, at its

current version, does not consider the spatial relationships
between individual path portions Eq and does not, thus, use
contextual information about the navigation environment.

IV. SELF-LOCALIZATION

The localization procedure aims, here, to find the current
position of the robot during navigation, by determining
the key frame that is most likely to harbor the robot.
To do so, the robot computes the set of salient features
from its current position and compares them with the
learned landmark configurations. The matching determines
the similarity of the current features with each key frame
and therefore the likelihood of the current position. In this
work, we use a voting technique to compute this likelihood.

A. Landmark recognition

Our landmark recognition method is based on the spatial
and visual similarity between features detected during
navigation and landmarks learned during learning. Further,
the method uses the spatial relationships between features
/ landmarks as an additional constraint. Specifically, a set
of three features p = {P1, P2, P3} (Pi = (fi,xi)T ) is
compared with a set of three landmarks l = {L1, L2, L3}.
The feature set p matches the landmark set l if the single
features Pi visually and spatially (according to height y)
match the single landmarks Li as described in Equation 4
and if, additionally, the horizontal spatial order of the
three features is the same as that of the three landmarks.
Formally:
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Fig. 2. Mapping. The navigation path is divided into representative portions Eq , represented by key frames KFq , which are described by the
corresponding landmarks.

match(p, l) = True; if

‖fi − fLi‖
fnorm

+
|yi − yLi

|
ynorm

< σi ∀i ∈ {1, 2, 3} &

OrderX(p) = OrderX(l) (6)

where fnorm and ynorm are two normalization factors
determined as for Equation 4, σi is a combination of the
height variation ΔyLi and the descriptor vector standard
deviation ΣLi , and OrderX() sorts a list of features or
landmarks according to their x-coordinates.

B. Voting procedure

In order to determine which key frame is most likely
to be the current position of the robot, the detected fea-
tures vote for key frames which contain landmarks that
match these features. Given the set of all features P � =
{P1, ..., Pm} detected from the current position and the set
of all key frame K� = {K1, ..., Kn}, the voting procedure
is achieved as follows. For each key frame Ki, each triplet
p = {Pa, Pb, Pc} ⊂ P � of features is compared to each
triplet of landmarks l = {Lq, Lr, Ls} ⊂ Ki belonging to
Ki. If the matching between the features/landmarks triplets
is correct, then a votes accumulator A[i] corresponding to
Ki is incremented by one vote. These steps are formalized
in Algorithm 1.

The number of votes represents a measurement of the
likelihood of a key frame to be the current position of the
robot. This measurement is called, henceforth, localization
score.

V. EXPERIMENTS

This section reports some experiments that aim at eval-
uating the presented localization method. The experiments
consists first in learning visual landmarks from a reference

Algorithm 1 Voting procedure
Set of features P � = {P1, ..., Pm}
Set of key frames K� = {K1, ..., Kn}
Accumulator A[n] /* votes accumulator for each key
frame */

Initialize A[i] = 0 ∀i ∈ [0, n]

for all p = {Pa, Pb, Pc} ⊂ P � do
for i = 1 .. n do

for all l = {Lq, Lr, Ls} ⊂ Ki do
if (match(p, l) == TRUE) then

A[i]++
end if

end for
end for

end for

sequence of color images acquired by the robot while navi-
gating along a certain path. These landmarks are organized
into key frames. Then, a test sequence is acquired while
the robot follows a similar path and a localization score is
computed for each key frame. Since the robot starts almost
from the same position for both sequences (reference and
test), there exists an approximate timing between the two
sequences. The distribution of the localization scores over
the key frames as the robot moves forward is an indicator
of success/failure of the localization method. That means
that the first key frames must have the highest localization
score at the beginning of the test sequence while the last
ones must have lower localization scores (and vis-versa at
the end of the test sequence).

In our experiments, we consider two different navigation
paths: path 1 where the robot moves along a corridor
and path 2 chosen in a lab environment. For each path,
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Fig. 3. Experimental results (for more details, see text).



we acquired two different sequences, a reference sequence
(Ref1/Ref2) and a test sequence (Test1/Test2). For both paths,
the landmarks are learned from the reference sequences and
are organized into 8 key frames. As test sequences, we used
both the reference sequence itself and the test sequence.

Figure 3 summarizes the results of these experiments.
(a) illustrates the localization score for path 1 when using
the reference sequence as a test sequence (Ref1–Ref1). The
localization scores for the same path but with Test1 as a
test sequence are represented in (b). (c) and (d) of the
same figure illustrate the same results with navigation path
2. For comparison purposes, the localization score using
Ref1 from path 1 as reference sequence and Test2 from
path 2 as test sequence is illustrated in (e). In this latter
case the training and test sequences come from different
environments. Note that at each frame the detected features
are compared to the full set of key frames.

It can be seen that, for the four cases ((a)..(d)), the
localization scores tend to form a diagonal distribution,
which indicates the reliability of the localization method.
Note that the distribution of the localization scores does
not show any diagonal tendency when the reference and the
test sequences stem from different navigation environments
((e)). It must be emphasized that no contextual information
about the navigation environment is used for these experi-
ments.

VI. CONCLUSIONS

This paper presents a visual attention-based method for
robot self-localization. Using a saliency-based model of
visual attention, the method automatically selects the most
conspicuous and thus the most unique visual landmarks
of the navigation environment. In order to retain only
the most robust landmarks, the proposed method visually
characterizes and tracks the landmarks over time and uses
the quality of the tracking results as a robustness criterium.
The so selected landmarks are organized into a topological
map of the navigation path. During navigation, the method
automatically detects the most salient features of the envi-
ronment and compares them to the learned landmarks. The
number of correct matching between the features and the
landmarks is used as a score that measures the probability
of the location of the robot. The effectiveness of our method
is demonstrated by various experiments involving different
navigation environments. In future work, we intend to
extend our self-localization method to consider contex-
tual information about navigation environments, which is
expected to enhance the localization results. Further, our
method will be integrated into a more complete stochastic
navigation framework.
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