
Robot Navigation by Panoramic Vision and Attention Guided Features

Alexandre Bur1, Adriana Tapus2, Nabil Ouerhani1, Roland Siegwart2 and Heinz Hügli1
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Abstract

In visual-based robot navigation, panoramic vision
emerges as a very attractive candidate for solving the lo-
calization task. Unfortunately, current systems rely on spe-
cific feature selection processes that do not cover the re-
quirements of general purpose robots. In order to fulfill new
requirements of robot versatility and robustness to environ-
mental changes, we propose in this paper to perform the
feature selection of a panoramic vision system by means of
the saliency-based model of visual attention, a model known
for its universality. The first part of the paper describes a
localization system combining panoramic vision and visual
attention. The second part presents a series of indoor local-
ization experiments using panoramic vision and attention
guided feature detection. The results show the feasibility of
the approach and illustrate some of its capabilities.

1. Introduction

Vision is an interesting and attractive choice of sen-
sory input, in the context of robot navigation. Specifically,
panoramic vision is becoming very popular because it pro-
vides a wide field of view in a single image and the visual
information obtained is independent of the robot orienta-
tion. Many robot navigation methods based on panoramic
vision have been developed in literature. For instance, a
model in [9] was designed to perform topological naviga-
tion and visual path-following. The method has been tested
on a real robot equipped with an omnidirectional camera.
Another model for robot navigation using panoramic vi-
sion is described in [1]. Vertex and line features are ex-
tracted from the omnidirectional image and tracked so that
to determine the robot’s position and orientation. In [8],
the authors present an appearance-based system for topo-
logical localization. An omnidirectional camera was used.
The resulting images were classified in real-time based on
nearest-neighbor learning, image histogram matching and
a simple voting scheme. Tapus et al. [7] have conceived

a multi-modal, feature-based representation of the environ-
ment called a fingerprint of a place for localization and map-
ping. The multi-modal system is composed of an omnidi-
rectional vision system and a 360 degrees laser rangefinder.

In these systems, the feature selection process is usually
quite specific. In order to fulfill new requirements of versa-
tility and robustness imposed to general purpose robot op-
erating in wide varying environments, adaptive multi modal
feature detection is required. Inspired from human vision,
the saliency-based model of visual attention [3] is able to
automatically select the most salient features in different en-
vironments. In [5], the authors presented a feature-based
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Figure 1. Adaptive behavior of the visual at-
tention model for different environments

robot localization method relying on visual attention ap-
plied on conventional images and also showed its robust-
ness. Applying the saliency-based model for feature de-
tection provides automatic adaptation to different environ-
ments, like indoor and outdoor environments (Figure 1).

The purpose of this work is to get benefit of two main
aspects: a) the omnidirectional vision for its independence
of robot orientation and b) the visual attention-based fea-
ture extraction for its ability to cope with a wide varying
environment.



The rest of the paper is structured as follows. Section
2 shows how visual attention applies to panoramic vision
and how orientation independent robot localization is per-
formed. Section 3 presents robot localization experiments
and section 4 provides conclusions.

2. Visual Attention-based Navigation Using
Panoramic Vision

2.1. Saliency-based Model of Visual Atten-
tion

The saliency-based model of visual attention, used for
selecting the features of a scene, is composed of four main
steps [3, 4], described as follows:
1) A number of cues are extracted from the scene by com-
puting the so called feature maps Fj .
2) Each feature map Fj is transformed in its conspicuity
map Cj . Each conspicuity map highlights the parts of the
scene that strongly differ, according to a specific feature,
from their surrounding.
3) The conspicuity maps are integrated together, in a com-
petitive way, into a saliency map S in accordance with:

S =
J∑

j=1

N (Cj) (1)

where N () is the weighting operator for map promotion [3].
4) The features are derived from the peaks of the saliency
map (Figure 1 c and d).

2.2. Visual Feature Detection in Panoramic
Images

The saliency computation must be tuned to the specifici-
ties of panoramic images. As the features should also be de-
tected in the full range of 360◦, saliency computation algo-
rithm must be adapted to the circularity of the input image.
The circularity of the panoramic images allows to define the
neighborhood on the borders, so that features on the image
borders are also detected. Thus, the feature detection is ob-
tained in the full panoramic range (Figure 2 b and c). In this
paper, the saliency map is based on four different cues: im-
age intensity, two opponent color components red/green and
yellow/blue, and a corner-based cue (Harris method [2]).

Feature Characterization and Landmark Selection
Once detected, each feature On is characterized by its

spatial position in the image xOn
= (xOn

, yOn
) and a visual

descriptor vector fOn
, in which each component fj holds

the value of a cue at that location:

fOn
= (f1, ..., fj , ..., fJ )T with fj = Fj(xOn

) (2)
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Figure 2. From the panoramic image to the
horizontal feature projection

In order to take into account the spatial information of
the features, an appropriate spatial representation is used:
each set of features is represented on an horizontal one-
dimensional space, by projection (Figure 2d).

Finally, an observation catched by a panoramic image is
described by the set of features St (Figure 2c):

St = {On} with On = (xOn
, nxOn

, fOn
) (3)

where nxOn
is the index corresponding to the rank of the

features spatially ordered in the x direction.

2.3. Map Building

The features detected during a learning phase are used as
landmarks for localization during the navigation phase. In
this work, a topological approach is used. A simple segmen-
tation divides the path into equidistant portions Eq, each de-
scribed by a configuration of landmarks named key-frame
Kq.

Intrinsically, saliency provides a powerful adaptation to
the robot environment. To provide a further adaptation, de-
tected features are then chosen accordingly to their robust-
ness. The step consists in tracking features along the envi-
ronment [6] and to select as landmarks, the most persistent
features, i.e. the ones with the longest tracking paths. A
landmark is thus the representation of a robust feature that
is persistent along the same portion Eq.

A key-frame Kq is a set of robust features named land-
marks Lm, where each landmark is defined by the mean
characteristics of the considered feature along the same



portion: its mean spatial position in the image xLm
=

(xLm
, yLm

), its index nxLm
, its mean descriptor vector fLm

and its standard deviation vector fσLm
:

Kq = {Lm} with Lm = (xLm
, nxLm

, fLm
, fσLm

) (4)

2.4. Navigation Phase

As soon as the navigation map is available, the robot lo-
calizes itself by determining which key-frame Kq matches
the best the robot’s observation St at its current location.
2.4.1. Localization by Key-frame. The purpose is to
match a set St of visual features with a set Kq of landmarks
by measuring the visual and spatial similarity.

The visual landmark similarity: A landmark Lm and
a feature On are said similar in terms of visual character-
ization if their Mahalanobis distance is inferior to a given
threshold α:

∆f = (
f1Lm

− f1On

f1σLm

, ...,
fJLm

− fJOn

fJσLm

)T and ‖∆f‖ < α

(5)
where fJLm

, fJOn
and fJσLm

are the J components of re-
spectively fLm

, fOn
and fσLm

.
The spatial similarity of landmark triplet: In this

work, a comparison ”feature group to landmark group” is
used and the spatial similarity is measured by comparing
the relative distances between each element of the group.
Such a group matching strategy has the advantage to take
into account the spatial relationships of each element of the
group, which improves the matching quality. In this work,
the groups contain three elements (triplet).

Formally, let o = {O1, O2, O3} be a set of three features
compared with a set of three landmarks l = {L1, L2, L3}.
A triplet o is spatially similar to a triplet l if:

- the pairings (O1;L1), (O2;L2), (O3;L3) satisfy Eq.5.
- both sets are ordered with respect to their index nxLm

,
nxOn

under the principle of circularity.
- the absolute difference distances δ12 and δ23 are infe-

rior to a threshold Td:

δ12, δ23 < Td (6)

where δ12 = | (xO2 − xO1) − (xL2 − xL1) | (7)

and δ23 = | (xO3 − xO2) − (xL3 − xL2) | (8)

Given two spatial similar triplets, a function sci
not further

defined here quantifies the overall similarity:

sci
(∆f1,∆f2,∆f3, δ12, δ23) (9)

where ∆fk holds for the visual similarity of the pairing
(Ok, Lk) and δ12, δ23 for the spatial similarity.

Observation likelihood: Let nKq
be the number of ob-

servation triplets that satisfy the landmark triplet similarity

for the key-frame Kq. In order to define which key-frame
Kq matches the best the observation, SC(Kq) is computed as
the sum of the similarity contribution of the nKq

triplets:

SC(Kq) =
nKq∑

i

sci
(10)

Thus, each key-frame receives several contributions, de-
pending on the observation triplets that match the land-
marks triplets. The measurement is then normalized in or-
der to represent a probability distribution, called visual ob-
servation likelihood and formalized as P (St|Kq):

P (St|Kq) =
SC(Kq)∑
n SC(Kn)

(11)

P (St|Kq) quantifies the likelihood of the observation St

given the associated key-frame Kq. Simple localization is
performed according to the maximum likelihood criterion:

q∗ = arg maxqP (St|Kq) (12)

2.4.2. Contextual Localization. To improve the robust-
ness of the localization, the contextual information of the
environment is taken into account. Thus, the visual obser-
vation likelihood P (St|Kq) is integrated into a Markov lo-
calization framework. In this work, the states of the Markov
model correspond to the portions Eq represented by its
key-frame Kq and the state transition model is defined by
P (Ki,Kj), corresponding to the probability of the state
transition from Ej to Ei.

Let Pt(Kq) be the probabilistic estimation of its loca-
tion at time t. Pt(Kq) is computed in Eq.13 by fusing the
prediction Ppredt

(Kq = Ki) with the visual observation
likelihood P (St|Ki):

Pt(Kq = Ki) =
1
αt

P (St|Ki) · Ppredt
(Kq = Ki) (13)

Ppredt
(Kq = Ki) =

1
βt

∑

Kj∈K�

P (Ki,Kj)·Pt−1(Kq = Kj)

(14)
Note that αt and βt are normalization factors used to keep
P (Kt) a probability distribution.

3. Experiments

In the experiments, the robot acquires a sequence of
panoramic images obtained from an equiangular omnidirec-
tional camera, while moving along a path in a lab environ-
ment (Figure 2). The path of about 10 meters long gives rise
to a sequence of 64 panoramic images. From this sequence,
the navigation map is built in three different configurations:



(A) the map segmenting the path in 8 equidistant portions,
(B) in 10 portions and (C) in 13 portions.

To quantify the localization, an approximate success rate
R is defined. R corresponds to the percentage of approxi-
mate correct localization, which is considered as correct if
the location with the maximum likelihood q∗ (Eq.12) corre-
sponds to qe ± 1, where qe represents the exact location.

During the localization experiment, the observation St

of each frame of the navigation sequence is computed and
compared with the key-frames of the map. St contains the 8
most salient features of the current frame and the matching
refers to all possible triplets of features and landmarks.

The value Rc measures the success rate of the simple
context-free localization. The value Rc holds for the con-
textual localization with the Markov framework, where the
initial estimation P (Kt=0) is set to 80% at the exact lo-
cation and the other are uniformly distributed at the other
locations. The state transitions P (Ki,Kj) are modelled by
a Gaussian distribution, i.e. transition to the neighboring
portions is more likely than transition to distant portions.

The first experiment (Exp.1) tends to evaluate the quality
of the visual landmarks. It uses the same sequence for map
building and navigation. The second experiment (Exp.2)
verifies the orientation independence of the proposed pro-
cess. It uses three test sequences corresponding to rotated
views of the original sequence by 90◦, 180◦ and 270◦ re-
spectively to be matched with the original map.

Exp.1 8 KF (A) 10 KF (B) 13 KF (C) mean
Rc[%] 87.5 82.8 79.7 83.3
Rc[%] 98.4 96.9 96.9 97.4

Exp.2 8 KF (A) 10 KF (B) 13 KF (C) mean
Rc[%] 80.2 80.2 78.1 79.5
Rc[%] 94.8 98.4 98.9 97.4

Table 1. Localization Results

The results are presented in Table 1. For simple key-
frame localization, the success rate Rc decreases as ex-
pected when the number of portions increases and exper-
iment 1 provides an average rate of 83%. Contextual lo-
calization improves the performance further and provides
an average rate Rc of 97%. Given the fact that the se-
quence of panoramic images provides only small changes,
with key-frames representing small portions of about one
meter length, the performance is considered as quite good.
In Exp.2, the results are similar to Exp.1 and show the ori-
entation independence of the localization method.

These results confirm the feasibility of the proposed ap-
proach and show the capacity of the system to catch robust
discriminant features. The next step will be to evaluate the

robustness of the method in presence of condition changes
(luminosity, different robot navigation trajectories).

4. Conclusions

An original robot localization system was presented, that
encompasses panoramic vision and attention guided feature
detection. First, the multi-cue saliency-based model of vi-
sual attention was adapted to panoramic image sequences;
a description for a feature set, as well as a suited feature
set matching method were also proposed. Then, localiza-
tion experiments were conducted using two simple meth-
ods. In a sequence of panoramic images showing only small
changes, the rate of successful localization is typically 83%
and 97% with the context-free and contextual methods re-
spectively. Another experiment shows the orientation inde-
pendence of the proposed processing. These results confirm
the feasibility of the proposed approach and show the capac-
ity of the system to catch robust discriminant features.
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