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Abstract. 3D images from time-of-flight cameras may suffer from false
depth readings caused by light scattering. In order to reduce such scat-
tering artifacts, a scattering compensation procedure is proposed. First,
scattering is analysed and expressed as a linear transform of a complex
image. Then, a simple scattering model is formulated. Assuming a space
invariant point spread function as a model for the scattering leads to
a solution in a form of a deconvolution scheme whose computational
feasibility and practical applicability are further discussed in this paper.

1 Introduction

Recent time-of-flight (TOF) cameras acquire 3D information about scenes in
real-time, with high depth resolution, two properties which ensure that such
cameras will soon be used in many demanding applications such as automo-
tive, quality control, biometrics, surveillance, etc. TOF cameras rely on active
illumination, and deliver range data by measuring the time needed for light to
travel from the camera light source to the scene and back to the camera. How-
ever, depth measurement may be affected by secondary reflections, namely by
reflections between the lens and imager, designated thereafter by scattering. In
situations where a wide range of depths is imaged, the large signal range can
make scattering from close objects come in competition with the primary signal
from far objects, causing artifacts in the depth measurements. This degradation
of the depth image is a significant penalty in many applications, especially when
background subtraction methods are employed [SFR06].
This paper provides an analysis of the scattering that affects TOF cameras and
proposes means to reduce its effects by an image processing compensation pro-
cedure that applies to the affected image. In section 2, we describe the scattering
effect and propose an algebraic formulation of its mechanism: scattering is inter-
preted as a linear additive contribution to a complex signal. Then, a real valued
point spread-function (PSF) is used to describe the perturbation in a simple way.
In section 3, we present scattering compensation methods. Based on the PSF ap-
proach, scattering compensation is expressed as a blind deconvolution problem
for a complex signal. Avoiding the superior complexity of blind deconvolution,
we use an empirical estimate of the PSF and straightforward deconvolution. Sec-
tion 4 proposes a scattering model suited for real-time compensation, introduces



empirical estimation of its PSF, and presents experimental results showing the
ability of the proposed method to reduce depth artifacts caused by scattering.
Finally, section 5 summarizes our contribution to scattering compensation and
lists further possible developments to improve its performance.

2 Scattering in time-of-flight cameras

2.1 Operation of a time-of-flight camera

Time-of-flight cameras involve active illumination, and deliver range (or depth)
data by measuring the time needed for a light signal to travel from the camera
light source to the scene and back to the camera sensor, as illustrated in figure
1. Present cameras ([CSE06a],[Can06]) are based on the continuous emission

Fig. 1: Time-of-flight camera - Principle of operation

of a periodic signal. The frequency of modulation f of this signal is typically
20MHz. The periodic signal S(i) received at each pixel (i) of the camera sensor
is described by its amplitude A(i) and its phase ϕ(i).

S(i) = A(i) · eϕ(i) (1)

The range r is directly proportional to the phase :

r(i) =
c

4π f
· ϕ(i) (2)

where c is the speed of light.

2.2 Range measurement degraded by scattering

When an ideal signal S(i) is affected by a parasitic additive contribution ∆S(i)
of different phase, produced for example by light scattering, the phase of the
new complex signal S + ∆S differs from the original phase in a proportion that



increases with the ratio ∆A/A of the respective signal amplitudes. The ampli-
tude A influences therefore the reliability of the depth measurement. The major
parameters affecting this quantity are the range r to the imaged object, the angle
θ of light incidence on the surface and the object albedo ρ :

A ∝ ρ · cos(θ)
r2

(3)

In a practical situation, the spread of possible values for r, θ and ρ results in a
very high amplitude dynamic range that the camera must handle. In particular,
when the spread of depths is wide, the 1/r2 behaviour is critical, since it results
in very strong amplitude level differences.
Such a situation is illustrated in figure 2. The scene imaged is an office room
(2a). A reference range image is taken when the room is empty (2b). A second
range image is acquired in the same conditions, except for the presence of a close
person in the field of view (2c). Comparison of both range images shows how the
depth of the unchanged background is affected by light from the close person.
The range difference between the two acquisitions was reported in fig. (2d). In

(a) (b)

(c) (d)

Fig. 2: Illustration of depth artifacts - (a) Color image - (b) Background
range image - (c) Range image with foreground. - (d) Range image dif-
ference

this example, the measured range for the unchanged background decreases in
presence of the person by values ranging from 100 to 400 mm.



2.3 Linear scattering model

Scattering artifacts are caused by multiple internal reflections occurring inside
the camera device [CSE06b], as illustrated in figure 3 by a simple example with
three pixels. Figure 4 shows the related complex signals S(1), S(2), and S(3), first
in absence of scattering (4a), then with scattering present (4b). This example
shows how parasitic reflections from a strong signal source S(1) can come in
competition with the direct signal from far objects S(2) and S(3). Under the
assumption of a linear process, we can describe this coupling through coefficients
arranged in a 3x3 matrix h, and the measured signals Smeas are then given by
the expression :

Smeas(i) =
3∑

m=1

h(i,m) · S(m) i = 1, 2, 3 (4)

where the superposition of different signals is computed as an addition in the
complex plane.
Since, in TOF imaging, far objects have a low amplitude (eq. 3), they are most
affected by the scattering phenomenon. This is verified for signals S(2) and S(3)
in our example. Moreover, this model explains why depth artifacts are often
not necessarily associated with a significant change in the amplitude measured
for the affected pixels. In figure 4, the phase difference between S(1) and S(3)
is such that the perturbation by S(1) on S(3) creates a large range artifact:
ϕmeas(3) 6= ϕ(3), but a negligible amplitude change: Ameas(3) ≈ A(3).
Extending this model to all pixels of an image S(i, j), we write :

Smeas(i, j) =
∑
m

∑
n

h(i, j, m, n) · S(m,n) (5)

where the four-dimensional tensor h(i, j, m, n) contains real-valued, linear cou-
pling coefficients ( h(i, j, m, n) ∈ R ∀(i, j, m, n), ∂

∂S h = 0). To discuss only scat-
tering, we can formally split the measured signal into an ideal signal S and a
scattering signal Sscat

Smeas(i, j) = S(i, j) + Sscat(i, j) (6)

From our linear assumption (eq. 5), we can express Sscat through a linear
”scattering-only” tensor ∆h(i, j, m, n) such that :

Sscat(i, j) =
∑
m

∑
n

∆h(i, j, m, n) · S(m,n) (7)

The general solution is complex and we propose a simplification by assuming
space invariant scattering.

2.4 Space invariant model

The assumption of space invariant scattering is that the magnitude of the cou-
pling between two pixels depends only on their spatial separation. With this



Fig. 3: Light scattering in TOF camera (after [CSE06b]).
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Fig. 4: Example of coupling between three measurement points



hypothesis, we can rewrite eq. 7 as a convolution operation :

Sscat(i, j) =
∑
m

∑
n

∆h(i−m, j − n) · S(m,n) = S(i, j) ∗ ∗∆h(i, j) (8)

where ∗∗ denotes the 2D convolution. If we define h0 as the neutral element with
respect to convolution, we can express equation 6 with a convolution operation :

Smeas(i, j) = S(i, j) ∗ ∗(h0(i, j) + ∆h(i, j)) = S(i, j) ∗ ∗h(i, j) (9)

where h = h0 + ∆h is interpreted as a camera point spread function including
scattering coupling.

3 Scattering compensation

3.1 Goal of scattering compensation

The goal of scattering compensation is to recover S, based on the signal Smeas

returned by the camera. Moreover, to be interesting in a practical application,
the complexity of the compensation method used should be low enough to allow
for real-time processing. Finally, the practical application we consider (range
measurement with time-of-flight camera) puts the emphasis on precise recov-
ery of the phase information Φ, whereas recovery of amplitude A is considered
secondary.

3.2 Deconvolution

With the convolution model expressed in equation 9, recovery of the signal S from
a measurement of Smeas falls into the category of deconvolution problems. More
specifically, since the PSF h is not known a-priori, scattering compensation is a
blind deconvolution problem. Unfortunately, blind deconvolution is an ill-posed
problem [PGY05], [AD88], even for real valued signals. In the case of time-of-
flight scattering, the signal for blind deconvolution is complex. Although blind
deconvolution algorithm for complex data have been proposed, they are practi-
cally limited to few signals sources [Cap98],[TLZ05],[GG06] and, when applied
to images, small image size [GR94]1. Moreover, blind deconvolution methods are
expected to fail on problems where the difference between degraded and original
data is a small amplitude residual.
Since, in the practical application, only the recovery of S is required, we can
avoid the complexity of blind deconvolution by assuming the existence of an
inverse filter (deconvolution filter).

1 Blind deconvolution of complex images involves minimization or root-finding of a
complex polynomial whose degrees varies as the square of the image size.



Inverse filter for deconvolution In the following discussion, we assume the
existence of an inverse filter I which performs the deconvolution, that is :

S = Smeas ∗ ∗I (10)

Using again h0, the neutral PSF with respect to convolution, we can write I =
h0 −∆I so that eq. 10 takes the form :

S = Smeas − Smeas ∗ ∗∆I (11)

By identification in eq. 6, we have Sscat = Smeas ∗∗∆I. Knowledge of ∆h or ∆I
is equivalent, since those two filters are linked through the Fourier transform :

I = h0 −∆I = F−1 {1/F {h0 + ∆h}} (12)

However, using eq. 11 is more convenient for scattering compensation, since it
involves the measured signal Smeas rather than the original signal S, which we
try to recover. More details on how an appropriate inverse filter ∆I can be
determined experimentally are given in section 4.

4 Experimentation

4.1 Separable inverse filter

The practical implementation for recovery of S is based on eq. 11. Aiming for
real-time operation, we choose to express our candidate correction operator ∆̂I
as a weighed sum of separable gaussian kernels of different standard deviation.

∆̂I(i, j) =
G∑

k=1

w(k) · Ih(i, k) · Iv(j, k) (13)

where :

– Ih is a 1D horizontal gaussian kernel(∈ R): Ih(i, k) = 1√
2πσh(k)

e
− i2

2σ2
h
(k)

– Iv is a 1D vertical gaussian kernel (∈ R): Iv(j, k) = 1√
2πσv(k)

e
− j2

2σ2
v(k)

– w(k) is a scalar (∈ R) weight.

The resulting scattering compensation process is illustrated schematically in fig-
ure 5. In the next paragraph, we describe an approach to estimate ∆I experi-
mentally.

4.2 Estimating the inverse filter

Ideally, ∆h should be determined from the response h of the system when stim-
ulated with a point source. The inverse filter ∆I could then be computed from
relation 12. Unfortunately, this approach is not practical for two main reasons :



no scattering point source exists, and the efficiency of scattering coupling is too
low allow a reliable measurement of the impulse response : ∆hmax < 10−5.

The approach chosen to overcome this difficulty is to empirically estimate the
inverse filter ∆I by trial and error by a human expert. A real-time implemen-
tation of the scattering compensation method based on eq. 11 was realized, for
inverse filters expressed as sums of gaussians, and where the candidate inverse
filter ∆̂I can be modified by the human expert. During the training, a scene
containing only far objects is imaged, and recorded as a background reference.
In a second phase, a foreground object is introduced in the field of view, causing
scattering. The human expert compares the output of the scattering compen-
sation process with the recorded background. Based on the mismatch in range
for background pixels, the description of the inverse filter is adjusted, aiming
for reduction of scattering artifacts in the range map. For complexity reasons,
the inverse filter description is limited to the sum of a small number of gaussian
kernels. Note also that with this method, the computation load is determined
by the extent of the kernels.
A typical model is given below. It is specified by three gaussians and their re-
spective weights.

k σh σv w
1 32 64 0.1000
2 48 48 0.0700
3 64 64 0.1800

(14)

4.3 Performance

To evaluate the performance of the proposed scattering compensation method,
we perform experiments in which a scene is measured without and with a fore-
ground acting as a scattering source. The depth measured when the foreground is
absent is considered as ground truth2. In scenes where the foreground is present,
each background pixel is compared to its recorded depth (the foreground object
is excluded by depth segmentation). In the example of fig. 2, the average lift on
all background pixels is reduced from 33cm to 12cm when scattering compensa-
tion is used. This represents a 60% damping in scattering artifacts.
To check the validity of the approach, background lift must be compared for
various configurations of camera and scatterer. Therefore, an experiment was
performed where the same foreground object was positioned at four different
distances from the camera, with three different background textures. Distance
to background is the same in all situations : 180cm. Figure 6 summarises the ex-
periments. The average background lift is plotted as a function of the foreground
object distance, for the three background situations. Absence of scattering is
characterized by a null lift (green curve). Red curves represent the average lift
for the raw signals, while the blue curves represent the average lift for signals

2 More specifically, background is computed as the average of 100 or more frames of
the empty scene.



where scattering compensation was applied. First, we verify that the compen-
sation procedure works well in the limit of low scattering : when the distance
between foreground and camera is large, the lift is not noticeable. Note how the
green, blue and red curves merge for distances r > 1100 mm. For larger scatter-
ing, the raw data always shows more background lift than data with scattering
compensation. The improvement varies between 95% and 38% in difficult situa-
tions.
We verify that distance between scatterer object and camera is critical for scat-
tering artifacts. We can also note that compensation is more efficient when scat-
tering is small (i.e. for a bright background, or when the scatterer is far away).

5 Conclusions

In this paper, we studied scattering artifacts observed in TOF imaging and
introduced an image processing compensation method. Competition between
primary signal and scattering was described using the complex representation.
Hypotheses of linearity and space invariance were used to develop a model where
scattering is expressed by a convolution operation. This model was then used to
investigate scattering compensation methods. By restricting the inverse filter to
convolution kernels expressed as sums of separable gaussians, we were able to
propose a scattering compensation procedure working in real-time. Using only
output data from the TOF camera, we built an estimate of the inverse filter,
which was then used for scattering compensation. The experimental application
of this procedure resulted in a reduction of scattering (measured from the av-
erage background lift) by values ranging from 95% at best to 38% in difficult
situations.
For even better compensation results, the proposed approach can be extended
in the future. First, the empirical determination of scattering kernel could be
improved through automated optimization. Moreover, as results in different test
situations suggest that position independence is not fully verified, a more ad-
vanced version of scattering model, allowing for instance a variable compensation
kernel ∆I could be considered.
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Fig. 5: Scattering compensation - Real time implementation: subtraction
of scattering estimate, computed with compensation kernel expressed as
a sum of separable gaussians.



Fig. 6: Scattering compensation experiment
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